996 resultados para motion adaptation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a speed-matching task, we measured the speed tuning of the dynamic motion aftereVect (MAE). The results of our Wrst experiment, in which we co-varied dot speed in the adaptation and test stimuli, revealed a speed tuning function. We sought to tease apart what contribution, if any, the test stimulus makes towards the observed speed tuning. This was examined by independently manipulating dot speed in the adaptation and test stimuli, and measuring the eVect this had on the perceived speed of the dynamic MAE. The results revealed that the speed tuning of the dynamic MAE is determined, not by the speed of the adaptation stimulus, but by the local motion characteristics of the dynamic test stimulus. The role of the test stimulus in determining the perceived speed of the dynamic MAE was conWrmed by showing that, if one uses a test stimulus containing two sources of local speed information, observers report seeing a transparent MAE; this is despite the fact that adaptation is induced using a single-speed stimulus. Thus while the adaptation stimulus necessarily determines perceived direction of the dynamic MAE, its perceived speed is determined by the test stimulus. This dissociation of speed and direction supports the notion that the processing of these two visual attributes may be partially independent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we describe a motion stimulus in which the quality of rotation is fractal. This makes its motion unavailable to the translationbased motion analysis known to underlie much of our motion perception. In contrast, normal rotation can be extracted through the aggregation of the outputs of translational mechanisms. Neural adaptation of these translation-based motion mechanisms is thought to drive the motion after-effect, a phenomenon in which prolonged viewing of motion in one direction leads to a percept of motion in the opposite direction. We measured the motion after-effects induced in static and moving stimuli by fractal rotation. The after-effects found were an order of magnitude smaller than those elicited by normal rotation. Our findings suggest that the analysis of fractal rotation involves different neural processes than those for standard translational motion. Given that the percept of motion elicited by fractal rotation is a clear example of motion derived from form analysis, we propose that the extraction of fractal rotation may reflect the operation of a general mechanism for inferring motion from changes in form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that context influences our perception of visual motion direction. For example, spatial and temporal context manipulations can be used to induce two well-known motion illusions: direction repulsion and the direction after-effect (DAE). Both result in inaccurate perception of direction when a moving pattern is either superimposed on (direction repulsion), or presented following adaptation to (DAE), another pattern moving in a different direction. Remarkable similarities in tuning characteristics suggest that common processes underlie the two illusions. What is not clear, however, is whether the processes driving the two illusions are expressions of the same or different neural substrates. Here we report two experiments demonstrating that direction repulsion and the DAE are, in fact, expressions of different neural substrates. Our strategy was to use each of the illusions to create a distorted perceptual representation upon which the mechanisms generating the other illusion could potentially operate. We found that the processes mediating direction repulsion did indeed access the distorted perceptual representation induced by the DAE. Conversely, the DAE was unaffected by direction repulsion. Thus parallels in perceptual phenomenology do not necessarily imply common neural substrates. Our results also demonstrate that the neural processes driving the DAE occur at an earlier stage of motion processing than those underlying direction repulsion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The duration compression effect is a phenomenon in which prior adaptation to a spatially circumscribed dynamic stimulus results in the duration of subsequent subsecond stimuli presented in the adapted region being underestimated. There is disagreement over the frame of reference within which the duration compression phenomenon occurs. One view holds that the effect is driven by retinotopic-tuned mechanisms located at early stages of visual processing, and an alternate position is that the mechanisms are spatiotopic and occur at later stages of visual processing (MT+). We addressed the retinotopic-spatiotopic question by using adapting stimuli – drifting plaids - that are known to activate global-motion mechanisms in area MT. If spatiotopic mechanisms contribute to the duration compression effect, drifting plaid adaptors should be well suited to revealing them. Following adaptation participants were tasked with estimating the duration of a 600ms random dot stimulus, whose direction was identical to the pattern direction of the adapting plaid, presented at either the same retinotopic or the same spatiotopic location as the adaptor. Our results reveal significant duration compression in both conditions, pointing to the involvement of both retinotopic-tuned and spatiotopic-tuned mechanisms in the duration compression effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static movement aftereffects (MAEs) were measured after adaptation to vertical square-wave luminance gratings drifting horizontally within a central window in a surrounding stationary vertical grating. The relationship between the stationary test grating and the surround was manipulated by varying the alignment of the stationary stripes in the window and those in the surround, and the type of outline separating the window and the surround [no outline, black outline (invisible on black stripes), and red outline (visible throughout its length)]. Offsetting the stripes in the window significantly increased both the duration and ratings of the strength of MAEs. Manipulating the outline had no significant effect on either measure of MAE strength. In a second experiment, in which the stationary test fields alone were presented, participants judged how segregated the test field appeared from its surround. In contrast to the MAE measures, outline as well as offset contributed to judged segregation. In a third experiment, in which test-stripe offset wits systematically manipulated, segregation ratings rose with offset. However, MAE strength was greater at medium than at either small or large (180 degrees phase shift) offsets. The effects of these manipulations on the MAE are interpreted in terms of a spatial mechanism which integrates motion signals along collinear contours of the test field and surround, and so causes a reduction of motion contrast at the edges of the test field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An equation of Monge-Ampère type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates meshes that keep the same connectivity as the original mesh, making them suitable for r-adaptive simulations, in which the equations of motion can be solved in a moving frame of reference in order to avoid mapping the solution between old and new meshes and to avoid load balancing problems on parallel computers. The semi-implicit solution of the Monge-Ampère type equation involves a new linearisation of the Hessian term, and exponential maps are used to map from old to new meshes on the sphere. The determinant of the Hessian is evaluated as the change in volume between old and new mesh cells, rather than using numerical approximations to the gradients. OT meshes are generated to compare with centroidal Voronoi tesselations on the sphere and are found to have advantages and disadvantages; OT equidistribution is more accurate, the number of iterations to convergence is independent of the mesh size, face skewness is reduced and the connectivity does not change. However anisotropy is higher and the OT meshes are non-orthogonal. It is shown that optimal transport on the sphere leads to meshes that do not tangle. However, tangling can be introduced by numerical errors in calculating the gradient of the mesh potential. Methods for alleviating this problem are explored. Finally, OT meshes are generated using observed precipitation as a monitor function, in order to demonstrate the potential power of the technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direction and speed of motion of a one-dimensional (1-D) stimulus, such as a grating, presented within a circular aperture is ambiguous. This ambiguity, referred to as the Aperture Problem (Fennema & Thompson, 1979) results from (i) the inability to detect motion parallel to grating orientation, and (ii) the occlusion of border information, such as the ‘ends’ of the grating, by the surface forming the aperture, Adelson and Movshon's (1982) intcrsection-of-constraints (IOC) model of motion perception describes a two-stage method of disambiguating the motion of 1-D moving stimuli (e.g., gratings) to produce unambiguous motion of two-dimensional (2-D) objects (e.g., plaid patterns) made up of several 1-D components. Specifically, in the IOC model ambiguous 1-D motions extracted by Stage 1 component-selective mechanisms are integrated by Stage 2 pattern-selective mechanisms to produce unambiguous 2-D motion signals. ‘Integration’ in the context of the IOC model involves determining the single motion vector (i.e., combination of direction and speed) which is consistent with the I-D components of a 2-D object. Since the IOC model assumes that 2-D objects undergo pure translation (i.e., without distortion, rotation, etc.), the motion vector consistent with all 1-D components describes the motion of the 2-D object itself. Adelson and Movshon (1982) propose that neural implementation of the computation underlying the IOC model is reflected in the perception of coherent 2-D plaid motion reported when two separately-moving ‘component’ gratings are superimposed. Using these plaid patterns the present thesis assesses the IOC model in terms of its ability to account for the perception of 2-D motion in a variety of circumstances. In the first series of experiments it is argued that the unambiguous motion perceived for a single grating presented within a rectangular aperture (i.e., the Barberpole illusion; Wallach, 1976) reflects application of the IOC computation to the moving 1-D grating and the stationary boundary of the aperture. While contrary to the assumption which underlies the IOC model (viz., that integration occurs between moving 1-D stimuli), evidence consistent with the involvement of the IOC computation in mediating the Barberpole illusion (in which there is only one moving stimulus) is obtained by measuring plaid coherence as a function of aperture shape. It is found that rectangular apertures which bias perceived component motions in directions consistent with plaid direction facilitate plaid coherence, while rectangular apertures which bias perceived component motions in directions inconsistent with plaid direction disrupt plaid coherence. In the second series of experiments, perceived directions of motion of type I symmetrical, type I asymmetrical, and type II plaids are measured with the aim of investigating the deviations in plaid directions reported by Ferrera and Wilson (1990) and Yo and Wilson (1992). Perceived directions of both asymmetrical and type II plaids are shown to deviate away from lOC-predicted directions and towards mean component direction. Furthermore, the magnitude of these deviations is being proportional to the difference between lOC-predicted plaid direction and mean component direction. On the basis of these directional deviations, modification to the IOC model is proposed. In the modified IOC model it is argued that plaid perception involves (i) the activity of Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these pattern-selective mechanisms) involved in implementing the IOC computation, and (ii) component-selective mechanisms which influence plaid perception directly, and ‘extraneously’ to the IOC computation. In the third series of experiments the validity of this modified IOC model, as well as the validity of alternative one-stage models of plaid perception are assessed in relation to perceived directions of plaid-induced MAEs as a function of both plaid direction and mean component direction. It is found that plaid-induced MAEs are shifted away from directions opposite to lOC-predicted plaid direction towards the direction opposite to mean component direction. This pattern of results is taken to be consistent with the modified IOC model which predicts the activity, and adaptation both of mechanisms signalling plaid direction (via implementation of the IOC computation), and ‘extraneous-type’ component-selective mechanisms signalling component directions. Alternative one-stage models which predict the adaptation of only mechanisms signalling plaid direction (the feature-tracking model), or the adaptation only of mechanisms signalling component directions (the distribution-of-activity model), cannot account for the directions of plaid-induced MAEs reported. The ability of the modified IOC model to account for the perceived directions of (i) gratings in rectangular apertures, (ii) various types of plaid in circular apertures, and (iii) directions of plaid-induced MAEs, is interpreted as supporting the proposition that human motion perception is based on a parallel and distributed process involving Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these mechanisms) taken to implement the IOC computation, and component-selective mechanisms taken to provide an 'extraneous' direct contribution to motion perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. To investigate initial comfort and adaptation of currently successful low oxygen transmissibility soft lens wearers refitted with silicone hydrogel (SH) lenses for daily wear.

Methods. Fifty-five subjects were enrolled in a subject-masked 5-month clinical trial in which they wore 5 SH lenses in a randomized, crossover design. Comfort, burning, and dryness were rated on scales of 0 to 100 immediately on insertion and the time for lens settling was recorded. Symptoms were then rated at various times, using BlackBerry wireless communication devices (Research in Motion, Waterloo, Canada), during the day for 2 cycles of 2 weeks wear for each lens type.

Results. Comfort immediately on insertion varied between lens types (P=0.002). All lens types were reported by the subjects to have settled within 30 to 45 sec of insertion (P=0.14) and settled comfort was greater than comfort immediately on insertion (P<0.001). Comfort within the first hour of wear also varied between lens types (P=0.02). Comfort during the day decreased significantly for all lenses (P=0.001), but there was no difference between lenses (P=0.19) and no effect of lens age (P=0.15). The wearing times were greater with the SH lenses than the habitual lenses worn before study commencement (P=0.001). Overall performance of the lenses after 4 weeks was high, with no difference between lenses (P=0.45).

Conclusions. Initial comfort and adaptation to all SH lenses were good and no differences in the overall ratings were found between the 5 SH lenses investigated. Decreased comfort was noted later in the day with all lens types, but longer wearing times were reported with the SH lenses than previous hydroxyethyl methacrylate-based lenses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large corpus of data obtained by means of empirical study of neuromuscular adaptation is currently of limited use to athletes and their coaches. One of the reasons lies in the unclear direct practical utility of many individual trials. This paper introduces a mathematical model of adaptation to resistance training, which derives its elements from physiological fundamentals on the one side, and empirical findings on the other. The key element of the proposed model is what is here termed the athlete’s capability profile. This is a generalization of length and velocity dependent force production characteristics of individual muscles, to an exercise with arbitrary biomechanics. The capability profile, a two-dimensional function over the capability plane, plays the central role in the proposed model of the training-adaptation feedback loop. Together with a dynamic model of resistance the capability profile is used in the model’s predictive stage when exercise performance is simulated using a numerical approximation of differential equations of motion. Simulation results are used to infer the adaptational stimulus, which manifests itself through a fed back modification of the capability profile. It is shown how empirical evidence of exercise specificity can be formulated mathematically and integrated in this framework. A detailed description of the proposed model is followed by examples of its application—new insights into the effects of accommodating loading for powerlifting are demonstrated. This is followed by a discussion of the limitations of the proposed model and an overview of avenues for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of so-called sticking points in a lift is pervasive in weight training practice. Biomechanically complex exercises often exhibit multi modal variation of effective force exerted against the load as a function of the elevation and velocity of the load. This results in a variety of possible loci for the occurrence of sticking points and makes the problem of designing the optimal training strategy to overcome them challenging. In this article a case founded on theoretical grounds is made against a purely empirical method. It is argued that the nature of the problem considered and the wide range of variables involved limit the generality of conclusions which can be drawn from experimental studies alone. Instead an alternative is described, whereby a recently proposed mathematical model of neuromuscular adaptation is employed in a series of computer simulations. These are used to examine quantitatively the effects of differently targeted partial range of motion (ROM) training approaches. Counter-intuitively and in contrast to common training practices, the key novel insight inferred from the obtained results is that in some cases the most effective approach for improving performance in an exercise with a sticking point at a particular point in the ROM is to improve force production capability at a different and possibly remote position in the lift. In the context of the employed model, this result is explained by changes in the neuromuscular and biomechanical environment for force production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goals of this study were to examine the visual information influence on body sway as a function of self- and object-motion perception and visual information quality. Participants that were aware (object-motion) and unaware (self-motion) of the movement of a moving room were asked to stand upright at five different distances from its frontal wall. The visual information effect on body sway decreased when participants were aware about the sensory manipulation. Moreover, while the visual influence on body sway decreased as the distance increased in the self-motion perception, no effects were observed in the object-motion mode. The overall results indicate that postural control system functioning can be altered by prior knowledge, and adaptation due to changes in sensory quality seem to occur in the self- but not in the object-motion perception mode. (C) 2004 Elsevier B.V.. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN. Observational cohort study. OBJECTIVE. To investigate spinal coordination during preferred and fast speed walking in pain-free subjects with and without a history of recurrent low back pain (LBP). SUMMARY OF BACKGROUND DATA. Dynamic motion of the spine during walking is compromised in the presence of back pain (LBP), but its analysis often presents some challenges. The coexistence of significant symptoms may change gait because of pain or adaptation of the musculoskeletal structures or both. A history of LBP without the overlay of a current symptomatic episode allows a better model in which to explore the impact on spinal coordination during walking. METHODS. Spinal and lower limb segmental motions were tracked using electromagnetic sensors. Analyses were conducted to explore the synchrony and spatial coordination of the segments and to compare the control and subjects with LBP. RESULTS. We found no apparent differences between the groups for either overall amplitude of motion or most indicators of coordination in the lumbar region; however, there were significant postural differences in the mid-stance phase and other indicators of less phase locking in controls compared with subjects with LBP. The lower thoracic spinal segment was more affected by the history of back pain than the lumbar segment. CONCLUSION. Although small, there were indicators that alterations in spinal movement and coordination in subjects with recurrent LBP were due to adaptive changes rather than the presence of pain. © 2013, Lippincott Williams & Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To systematically evaluate the dependence of intravoxel-incoherent-motion (IVIM) parameters on the b-value threshold separating the perfusion and diffusion compartment, and to implement and test an algorithm for the standardized computation of this threshold. METHODS Diffusion weighted images of the upper abdomen were acquired at 3 Tesla in eleven healthy male volunteers with 10 different b-values and in two healthy male volunteers with 16 different b-values. Region-of-interest IVIM analysis was applied to the abdominal organs and skeletal muscle with a systematic increase of the b-value threshold for computing pseudodiffusion D*, perfusion fraction Fp , diffusion coefficient D, and the sum of squared residuals to the bi-exponential IVIM-fit. RESULTS IVIM parameters strongly depended on the choice of the b-value threshold. The proposed algorithm successfully provided optimal b-value thresholds with the smallest residuals for all evaluated organs [s/mm2]: e.g., right liver lobe 20, spleen 20, right renal cortex 150, skeletal muscle 150. Mean D* [10(-3) mm(2) /s], Fp [%], and D [10(-3) mm(2) /s] values (±standard deviation) were: right liver lobe, 88.7 ± 42.5, 22.6 ± 7.4, 0.73 ± 0.12; right renal cortex: 11.5 ± 1.8, 18.3 ± 2.9, 1.68 ± 0.05; spleen: 41.9 ± 57.9, 8.2 ± 3.4, 0.69 ± 0.07; skeletal muscle: 21.7 ± 19.0; 7.4 ± 3.0; 1.36 ± 0.04. CONCLUSION IVIM parameters strongly depend upon the choice of the b-value threshold used for computation. The proposed algorithm may be used as a robust approach for IVIM analysis without organ-specific adaptation. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.