929 resultados para monitoring design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this text we present the design of a wearable health monitoring device capable of remotely monitoring health parameters of neonates for the first few weeks after birth. The device is primarily aimed at continuously tracking the skin temperature to indicate the onset of hypothermia in newborns. A medical grade thermistor is responsible for temperature measurement and is directly interfaced to a microcontroller with an integrated bluetooth low energy radio. An inertial sensor is also present in the device to facilitate breathing rate measurement which has been discussed briefly. Sensed data is transferred securely over bluetooth low energy radio to a nearby gateway, which relays the information to a central database for real time monitoring. Low power optimizations at both the circuit and software levels ensure a prolonged battery life. The device is packaged in a baby friendly, water proof housing and is easily sterilizable and reusable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a wireless sensor network mote hardware design and implementation are introduced for building deployment application. The core of the mote design is based on the 8 bit AVR microcontroller, Atmega1281 and 2.4 GHz wireless communication chip, CC2420. The module PCB fabrication is using the stackable technology providing powerful configuration capability. Three main layers of size 25 mm2 are structured to form the mote; these are RF, sensor and power layers. The sensors were selected carefully to meet both the building monitoring and design requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks. Experiments show that the developed mote works effectively in giving stable data acquisition and owns good communication and power performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.