453 resultados para molt


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of bird species studied to date have molt schedules that are not concurrent with other energy demanding life history stages, an outcome assumed to arise from energetic trade-offs. Empirical studies reveal that molt is one of the most energetically demanding and perplexingly inefficient growth processes measured. Furthermore, small birds, which have the highest mass-specific basal metabolic rates (BMRm), have the highest costs of molt per gram of feathers produced. However, many small passerines, including white-plumed honeyeaters (WPHE; Lichenostomus penicillatus), breed in response to resource availability at any time of year, and do so without interrupting their annual molt. We examined the energetic cost of molt in WPHE by quantifying weekly changes in minimum resting metabolic rate (RMRmin) during a natural-molt period in 7 wild-caught birds. We also measured the energetic cost of feather replacement in a second group of WPHEs that we forced to replace an additional 25% of their plumage at the start of their natural molt period. Energy expenditure during natural molt revealed an energy conversion efficiency of just 6.9% (±0.57) close to values reported for similar-sized birds from more predictable north-temperate environments. Maximum increases in RMRmin during the molt of WPHE, at 82% (±5.59) above individual pre-molt levels, were some of the highest yet reported. Yet RMRmin maxima during molt were not coincident with the peak period of feather replacement in naturally molting or plucked birds. Given the tight relationship between molt efficiency and mass-specific metabolic rate in all species studied to date, regardless of life-history pattern (Efficiency (%) = 35.720•10-0.494BMRm; r2 = 0.944; p =<0.0001), there appears to be concomitant physiological costs entrained in the molt period that is not directly due to feather replacement. Despite these high total expenditures, the protracted molt period of WPHE significantly reduces these added costs on a daily basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado: Clínica e Investigación Terapéutica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notificación a los jurados y universidad de Covet de las 4 libras y 1 hombre en el repartimiento que les ha correspondido del Consell del Batalló

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Relacion de la entrada que hizieron en la ciudad de Denia, Reyno de Valencia, las armas de la Magestad Catolica, del Rey nuestro Señor Carlos IIJ [sic] ... el dia 18 de agosto de 1705. (XVIII/1688).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Romans, y coloqui nou, pera divertir el humor y desterrar la melancolia, yà que no tenim dinès ... (NP849.91/3085).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Romans, y coloqui nou, pera divertir el humor y desterrar la melancolia, yà que no tenim dinès ... (NP849.91/3085).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Romans, y coloqui nou, pera divertir el humor y desterrar la melancolia, yà que no tenim dinès ... (NP849.91/3085).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Romans, y coloqui nou, pera divertir el humor y desterrar la melancolia, yà que no tenim dinès ... (NP849.91/3085).