961 resultados para mollusc inoculation
Resumo:
The biological nitrogen fixation is an alternative to supply the nitrogen needed for maize. The objective of this study was to evaluate the development and yield of maize in response to inoculation with Azospirillum associated with nitrogen fertilization. We conducted two field experiments in the summer harvest, the first in the 2000/2001 crop year in the region of Marechal Cândido Rondon, under conventional tillage, and second in the 2002/2003 agricultural year in the region of Cascavel, under no tillage. The experimental design in both experiments was a randomized complete block, with four replications, 2x2x2 factorial, with two levels of nitrogen at sowing (zero and 20 kg ha-1), two levels of inoculum (zero and 200 g ha-1) and two levels of nitrogen in topdressing (zero and 100 kg ha-1). There was evaluated the height of ear insertion, total plant height, leaf N content, shoot dry biomass and grain yield. The height of ear insertion and total plant height were not influenced by the factors under study. Nitrogen fertilization at sowing increased the leaf N content, causing the opposite effect when combined with inoculation. Inoculation with Azospirillum in the absence of nitrogen, provide productivity increases of 15.4% and 7.4% for 2000/2001 and 2002/2003 crops, respectively. The inoculation provided productivity similar to that obtained with 100 kg ha-1 in topdressing in crop 2000/2001, while in association with the topdressing, reduced productivity and shoot dry biomass in crop 2002/2003.
Resumo:
ABSTRACT The alternative technique of co-inoculation or mixed inoculation with symbiotic and non-symbiotic bacteria has been studied in leguminous plants. However, there are few field studies with common beans and under the influence of the amount of irrigated water. Thus, the objective of this study was to evaluate the efficiency of inoculation and co-inoculation of common beans with Rhizobium tropici and Azospirillum brasilense under two irrigation depths. The experiment was carried out in the winter of 2012 and 2013, in Selvíria, state of Mato Grosso do Sul. The experimental design was composed of randomized blocks in split-plot scheme with two irrigation depths in the plots (recommended for common beans and 75% of the recommended) and five forms of nitrogen (N) supply in the split-plots (control non-inoculated with 40 kg ha- 1 of N in topdressing, 80 kg ha- 1 of N in topdressing, A. brasilense inoculation with 40 kg ha-1 of N in topdressing, R. tropici inoculation with 40 kg ha-1 of N in topdressing, and co-inoculation of A. brasilense and R. tropici with 40 kg ha- 1 of N in topdressing) with four repetitions. Co-inoculation increased nodulation in the second year of cultivation. None of the evaluated treatments increased the grain yield in relation to non-inoculated control with 40 kg ha-1 of nitrogen in topdressing, which presented average yield of 2,200 kg ha-1. The use of 75% of the recommended irrigation depth provides similar grain yield to the recommended irrigation depth in common beans cropped in winter.
Resumo:
Interaction between Paracoccidioides brasiliensis (Pb) and inflammatory cells in hamster testis was studied sequentially by transmission electron microscopy. In early lesions (six hours after inoculation), polymorphonuclear neutrophils (PMNs) were the major and mononuclear cells and eosinophils were the minor constituents of the inflammatory cells. PMNs were later replaced by mononuclear cells. Viable Pb cells were phagocytosed or surrounded by inflammatory cells. Preserved Pb cells usually had broad host-parasite interphases, whereas dying ones had narrow interphases. The outer layer of the fungus wall was sometimes broken by PMN in some focal points, broken pieces being peeled off and phagocytosed. Small Pb cells were uninuclear, and were often related to broad interphase. Large Pb cells were multinucleated with irregularly shaped wall, and sometimes had lomasome and/or myelin like structures. Different interaction patterns of Pb with inflammatory cells may be due to functionally different host cell flow to the inoculation site or due to the age of Pb cells or both.
Resumo:
Sixty-four isogenic Swiss mice were intradermically inoculated in both hind foot pads. The inocula, consisting of fungal suspensions from biopsies obtained from Jorge Lobos Disease patients, had the total number of fungi and the viability index determined using a Neubauer chamber and the fluorescein diacetate-ethidium bromide technique (FD-EB), respectively. The animals were sacrificed at times ranging from ten days to eighteen months after inoculation. The cellular infiltrate, mainly consisting of macrophages containing fungi, increased progressively up to end of the study; however, no macroscopic alterations were observed in the inoculated feet. After nine months, small numbers of Langhans giant cells started to appear in the infiltrate. A considerable number of fungi was observed at the end of the experimental period, but only a few were viable when stained by the FD-EB technique. This fact suggests that there is a multiplication of fungal cells, which are destroyed by the macrophages but remain in the tissue for a long time due perhaps to the difficulties in their elimination. These findings led us to conclude that in spite of the maintenance of the infection in these animals, Swiss mice cannot be considered an ideal model to study Jorge Lobos Disease. However, the authors call attention to the possibility of other mouse strains being more susceptible to Paracoccidioides loboi.
Resumo:
The subcutaneous tissue of the hamster cheek pouch, a site of immunologic privilege, has been used to investigate the potential infectivity of different types of parasites. It has been demonstrated that the implantation of fragments of lesions induced by the fungus Lacazia loboi, the etiologic agent of Jorge Lobo's disease, into the subcutaneous tissue of the hamster cheek pouch resulted in parasite multiplication and dissemination to satellite lymph nodes16. Here we describe the evolution of lesions induced by the inoculation of the isolated fungus into this immunologically privileged site. The morphology of the inflammatory response and fungal viability and proliferation were evaluated. Inoculation of the fungus into the cheek pouch induced histiocytic granulomas with rare lymphocytes. Although fungal cells were detected for a period of up to 180 days in these lesions, the fungi lost viability after the first day of inoculation. In contrast, when the parasite was inoculated into the footpad, non-organized histiocytic lesions were observed. Langhan's giant cells, lymphocytes and fungal particles were observed in these lesions. Fungal viability was observed up to 60 days after inoculation and non-viable parasites were present in the persistent lesions up to 180 days post-inoculation. These data indicate that the subcutaneous tissue of the hamster cheek pouch is not a suitable site for the proliferation of Lacazia loboi when the fungus isolated from human tissues is tested.
Resumo:
In a previous study, the authors inoculated Swiss mice with Lacazia loboi (L. loboi) and succeeded in maintaining a granulomatous infiltrate and viable fungal cells up to one year and six months after inoculation. Considering the experimental work on paracoccidioidomycosis, 0.03 ml of a fungal suspension obtained from a biopsy of a Jorge Lobo's Disease patient were inoculated into both hind foot pads of 32 six week-old BALB/c mice of both sexes. The animals were sacrificed 1, 4, 7 and 10 months post inoculation. The suspension contained 1.3 x 10(6) fungi/ml and presented 38% viability. Seven months after inoculation, most of the animals presented profuse infiltrates consisting of isolated histiocytes, foreign body and Langhans' giant cells and a large number of fungi, most of them viable. Emergence of macroscopic lesions was observed during the 8th month. Based on fungal count, viability index before and after inoculation, presence of macroscopic lesions and histopathological findings similar to the findings in humans, the authors believe that BALB/c mice may be a good experimental model to study Jorge Lobo's Disease, mainly regarding therapeutic evaluation.
Resumo:
A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.
Resumo:
Isolation of Leishmania parasite and species identification are important for confirmation and to help define the epidemiology of the leishmaniasis. Mice are often used to isolate pathogens, but the most common mouse strains are resistant to infection with parasites from the Leishmania (Viannia) subgenus. In this study we tested the inoculation of interferon gamma knockout (IFNγ KO) mice with biopsy macerates from Leishmania-infected patients to increase the possibility of isolating parasites. Biopsies from twenty five patients with clinical signs of leishmaniasis were taken and tested for the presence of parasites. Immunohistochemical assay (IHC) and conventional histopathology detected the parasite in 88% and 83% of the patients, respectively. Leishmania sp. were isolated in biopsy macerates from 52% of the patients by culture in Grace's insect medium, but 13% of isolates were lost due to contamination. Inoculation of macerates in IFNγ KO mice provides isolation of parasites in 31.8% of the biopsies. Most isolates belong to L. (Viannia) subgenus, as confirmed by PCR, except one that belongs to L. (Leishmania) subgenus. Our preliminary results support the use of IFNγ KO mice to improve the possibility to isolate New World Leishmania species.
Resumo:
The most common transmission route of tick-borne Rickettsia is through tick bite; nevertheless, other transmission routes should also be considered. We report a case of rickettsial infection in a 15-year-old boy caused by accidental contamination of the conjunctiva through the infected fluid of a crushed engorged tick removed from a dog. Right eye pain, conjunctival hyperaemia with mucopurulent exudate, chemosis and eyelid oedema were the first signs and symptoms. Two days later, the boy developed fever, myalgia, headache, abdominal pain and was vomiting; physical examination showed multiple cervical adenopathies but no rash. He was treated with doxycycline (200 mg/day) for 7 days with progressive resolution of clinical signs. Rickettsial infection was confirmed by immunofluorescence assay with serological seroconversion in two consecutive samples. Rickettsia conorii or Rickettsia massiliae were the possible causal agents since they are the Rickettsia spp found in the Rhipicephalus sanguineus dog tick in Portugal.
Resumo:
Human accidental infection with Angiostrongylus costaricensis may result in abdominal disease of varied severity. Slugs from the Veronicellidae family are the main intermediate hosts for this parasitic nematode of rodents. Phyllocaulis variegatus, Phyllocaulis soleiformis and Phyllocaulis boraceiensis were experimentally infected to describe the kinetics of L3 elimination in the mucus secretions of those veronicelid species. A maximum of 2 L3/g/day was found in the mucus, while the number of L3 isolated from the fibromuscular tissues varied from 14 to 448. Productive infection was established by inoculations in the hyponotum or in the body cavity, through the tegument. Intra-cavity injection is a less complex procedure and permits a better control of inocula. A preliminary trial to titrate the infective dosis for P. variegatus indicated that inocula should range between 1000 and 5000 L1. The data also confirmed the importance of P. variegatus as an intermediate host of A. costaricensis.
Resumo:
We have studied the role of the immune response in the morphology of the leishmaniotic granuloma induced in the cheek pouch of hamsters, an immunologically privileged site, after inoculation of 3 x 10(5) Leishmania mexicana. Animals were histologically and immunologically evaluated until 120 days after inoculation. Independent of the time of sacrifice, the animals were always non-reactors to the footpad test (FPT). At histology, the introduction of L. mexicana in the cheek pouch leads to an abscess that evolves to a granulomatous reaction rich in amastigote forms, and later it leads to resolution, even in the absence of immune response detectable by FPT. Our results demonstrate that the development of immune response is not preponderant for the control of infection induced by L. mexicana inoculated subcutaneously in the cheek pouch of the hamster. It also suggests that the macrophages present in the leishmaniotic granuloma are capable of eliminating this parasite, even in the absence of immune response evaluated by FPT.
Resumo:
Primary inoculation tuberculosis is an exogenous infection resulting from direct inoculation of bacteria into individuals with no acquired immunity to the organism. We report a 63-year-old male patient who was diagnosed with primary inoculation tuberculosis on the basis of clinical appearance and histopathological examination. The findings from this case emphasize the importance of clinical and histopathological findings in this rarely seen form of skin tuberculosis if the organism cannot be shown to grow in culture.
Resumo:
Leishmaniasis a disease of worldwide occurrence is caused by protozoa of the Leishmania genus. In Brazil, Leishmania (Viannia) braziliensis is the main parasite responsible for the American cutaneous leishmaniasis. Main hosts of this protozoa are small wild mammals particularly marsupials and rodents. The aim of this study was to evaluate if spiny rat Proechimys guyannensis (Rodentia: Echimydae) has role in the cycle of the American cutaneous leishmaniasis caused by L. (V.) braziliensis. Thus, promastigotes (the flagellate stage) of Leishmania (Viannia) braziliensis were used to inoculate seven spiny rats (Proechimys guyannensis). After inoculated intradermal at the ear pinna, nose and plantar pad, the rats were monitored for 180 days. Tissue samples collected at 90 and 180 days from the rats proved to be negative for the presence of genetic material from the parasite. After euthanasia, the protozoa also failed to growth in culture medium containing tissue samples collected from the rats showing that there was no infection. These results fail to prove that spiny rat has a role in the cycle of the American cutaneous leishmaniasis caused by L. (V.) braziliensis.
Resumo:
El cultivo de maní es de gran importancia en la provincia de Córdoba. En los últimos años, la pérdida de rendimiento del cultivo en la región centro debido a la degradación de los suelos, la incidencia de enfermedades causadas por hongos y la erosión hídrica y eólica ha desplazado el área de siembra hacia el sur de la provincia. La hipótesis planteada en este proyecto es que la diversidad de bacterias que habitan la rizósfera y/o los tejidos de maní constituye una fuente para la selección de aquéllos que, por sus propiedades fisiológicas y metabólicas, permitan mejorar el rendimiento del cultivo, actuando como biocontroladores de fitopatógenos o biofertilizantes. Los objetivos propuestos son: 1) Evaluar y caracterizar la actividad antifúngica en una población previamente seleccionada de microorganismos del suelo del área manisera de Córdoba para su utilización en el desarrollo de prácticas sustentables tendientes a optimizar la producción de dicho cultivo mediante funciones biocontroladoras. 2) Seleccionar bacterias nativas nodulantes de maní competitivas y eficientes en la fijación y asimilación de nitrógeno en maní para ser utilizadas como un inoculante potencial. La metodología a utilizar consistirá en ensayos de interacción planta-microorganismos usando técnicas moleculares y bioquímicas. Los estudios sobre el conocimiento de la biodiversidad del suelo en el área manisera aportarán herramientas para una transición hacia una agricultura sustentable, generándose un catálogo de bacterias simbióticas y de vida libre que muestran actividad PGPR y que podrían ser empleadas como biofertilizantes o biocontroladoras de fitopatógenos. Ello podría constituir un importante impulso en la economía regional, la cual se basa principalmente en la explotación agrícola.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014