992 resultados para molecular bonding


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The direct evidence for the existence of intra-molecular C-F center dot center dot center dot H-N hydrogen bond in organofluorine molecules, in the liquid state, is derived using NMR spectroscopy by the detection of long range interactions among fluorine, nitrogen and hydrogen atoms. The present study reports the determination of the relative signs and magnitudes of through space and through bond couplings to draw unambiguous evidence on the existence of weak molecular interactions involving organic fluorine. It is a simple, easy to implement, N-15 natural abundant two dimensional heteronuclear N-15-H-1 double quantum-single quantum correlation experiment. The existence of intra-molecular hydrogen bond is conclusively established in the investigated molecules. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The theoretical estimation of the dissociation constant, or pK(a), of weak acids continues to be a challenging field. Here, we show that ab initio CarParrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free-energy profile of the dissociation reaction provide reasonable estimates of the pK(a) value. Water molecules, sufficient to complete the three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid, and the difference in their values provides the estimate for pK(a). We show for a series of organic acids that CPMD simulations in conjunction with metadynamics can provide reasonable estimates of pK(a) values. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cis- and trans-butenedioic acid, and the isomers of hydroxybenzoic acid. These systems were chosen to highlight that the procedure could correctly account for the influence of the inductive effect as well as hydrogen bonding on pK(a) values of weak organic acids. In both situations, the CPMD metadynamics procedure faithfully reproduces the experimentally observed trend and the magnitudes of the pK(a) values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Themono-alkylation of DPP derivatives leads to cofacial pi-pi stacking via H-bonding unlike their di-alkylated counterparts, which exhibit a classical herringbone packing pattern. Single crystal organic field-effect transistor (OFET) measurements reveal a significant enhancement of charge carrier mobility for mono-hexyl DPP derivatives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intramolecular S center dot center dot center dot O chalcogen bonding and its potential to lock molecular conformation have been examined in the crystal forms of sulfamethizole, a sulfonamide antibiotic. Molecular complexes of sulfamethizole, including salts and cocrystal, have been synthesized, and their crystal structures were analyzed in order to examine the possible conformational preferences of the molecule in various ionic states and supramolecular environments (neutral/cocrystal, anionic salt, and cationic salt forms). The electrostatic potential mapped on Hirshfeld surfaces generated for these crystal forms provides insights into the possible binding modes of the drug in different environments. Further, the observed conformation locking feature has been rationalized in terms of the experimental charge density features of the intramolecular S center dot center dot O chalcogen bonding in sulfamethizole. The study quantitatively illustrates and rationalizes an intriguing case of a local minimum of molecular conformation being exclusively preferred over the global minimum, as it facilitates more efficient intermolecular interactions in a supramolecular environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular dynamics simulations on diffusion bonding of Cu-Ag showed that the thickness of the interfacial region depended on the stress. The interfacial region became amorphous during diffusion bonding, and it would normally transform from amorphous into crystalline structure when the structure was cooled to the room temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The new complexes [Pt(dppp)(py)(2)][OTf](2), 1, [Pt(dppp)(2-ap)(2)][OTf](2), 2, [(dppp)Pt(mu -OH){mu -NH(C5H3N)NH2}Pt(dppp)][OTf](2), 3 (py=pyridine, 2-ap=2-aminopyridine, NH(C5H3N)NH2=2,6-diaminopyridine anion, dppp = 1,3-bis(diphenylphosphino)propane, OTf=O3SCF3) have been prepared via reactions between [Pt(dppp)(OTf)(2)] and pyridine, 2-aminopyridine or 2,6-diaminopyridine (2,6-dap) respectively. The amines exhibit a range of co-ordination modes. Pyridine and 2-aminopyridine co-ordinate to platinum through endo-nitrogen atoms in complexes 1 and 2, the latter existing as a pair of rotomers due to the steric hindrance introduced by the 2-substituent. However, 2,6-diaminopyridine co-ordinates to platinum through the exo-nitrogen of one amino group, to give the unusual mu -amido complex 3. Reaction of the known orotate chelate complex [Pt(PEt3)(2)(N,O-HL)] [HL=orotate, the dianion of 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid (orotic acid)] with 2,6-dap gave [Pt(PEt3)(2)(2,6-dap)(N-HL)] 4, which contains an unconventional monodentate orotate ligand. In this co-ordination mode the orotate retains an ADA hydrogen bonding site and was found to co-crystallise with 2,6-dap via complementary ADA:DAD triple hydrogen bonds to give [Pt(PEt3)(2)(N-HL)(2,6-dap)].2,6-dap, 5. Complex 5 exhibits a helical chain structure of associated [1+1] adducts in the solid state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the synthesis of a family of gelators in which alkyl chains are connected to the amino groups of L-lysine methyl ester using a range of different hydrogen bonding linking groups (carbamate, amide, urea, thiourea and diacylhydrazine) using simple synthetic methodology based on isocyanate or acid chloride chemistry. The ability of these compounds to gelate organic solvents such as toluene or cyclohexane can be directly related to the ability of the linking group to form intermolecular hydrogen bonds. In general terms, the ability to structure solvents can be considered as: thiourea <carbamate <amide <urea similar to diacylhydrazine. This process has been confirmed by thermal measurements, scanning electron microscopy (SEM) and infrared and circular dichroism spectroscopies. By deprotecting the methyl ester group, we have demonstrated that a balance between hydrophobic and hydrophilic groups is essential-if the system has too much hydrophilicity (e. g., diacylhydrazine, urea) it will not form gels due to low solubility in the organic media. However, the less effective gelators based on amide and carbamate linkages are enhanced by converting the methyl ester to a carboxylic acid. Furthermore, subsequent mixing of the acid with a second component (diaminododecane) further enhances the ability to form networks, and, in the case of the amide, generates a two-component gel, which can immobilise a wide range of solvents of industrial interest including petrol and diesel (fuel oils), olive oil and sunflower oil (renewable food oils) and ethyl laurate, isopropyl myristate and isopropyl palmitate (oils used in pharmaceutical formulation). The gels are all thermoreversible, and may therefore be useful in controlled release/formulation applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactions in (molecular) organic crystalline solids have been shown to be important for exerting control that is unattainable over chemical transformations in solution. Such control has also been achieved for reactions within metal– organic cages. In these examples, the reactants are already in place within the crystals following the original crystal growth. The post-synthetic modification of metal–organic frameworks (MOFs and indeed reactions and catalysis within MOFs have been recently demonstrated; in these cases the reactants enter the crystals through permanent channels. Another growing area of interest within molecular solid-state chemistry is synthesis by mechanical co-grinding of solid reactants—often referred to as mechanochemistry. Finally, in a small number of reported examples, molecules also have been shown to enter nonporous crystals directly from the gas or vapor phase, but in only a few of these examples does a change in covalent bonding result, which indicates that a reaction occurs within the nonporous crystals. It is this latter type of highly uncommon reaction that is the focus of the present study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structures of 2-hydroxybenzamide(C7H7NO2) and 2-methoxybenzamide (C8H9NO2) have been determined in the gas-phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict four stable conformers for both 2-hydroxybenzamide and 2-methoxybenzamide. For both compounds, evidence for intramolecular hydrogen bonding is presented. In 2-hydroxybenzamide, the observed hydrogen bonded fragment is between the hydroxyl and carbonyl groups, while in 2-methoxybenzamide, the hydrogen bonded fragment is between one of the hydrogen atoms of the amide group and the methoxy oxygen atom.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solid-state structures of the previously known para-substituted diphenyltellurium dichlorides, (p-XC6H4)2TeCl2 (X=H (1), Me (2), MeO (3)) were investigated by 125Te MAS NMR spectroscopy and in case of 2 by single crystal X-ray diffraction. The 125Te-NMR shielding anisotropy (SA) was studied by tensor analyses based on relative intensities of the observed spinning sidebands. Solid-state NMR parameters, namely the isotropic chemical shift (δiso), anisotropy (ζ) and asymmetry (η), were discussed in relation to the molecular structures established by X-ray crystallography. The asymmetry (η) was found to be particularly sensitive to structural differences stemming mostly from the diverse secondary Te...Cl interactions, but no correlation with geometric parameters could be established.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and characterization of unsymmetric diorganotellurium compounds containing a sterically demanding I-naphthyl or
mesitylligand and a small bite chelating organic ligand capable of 1,4-Te···N(O) intramolecular interaction is described. The reaction
of ArTeCl3 (Ar = I-ClOH7, Np; 2,4,6-Me3C6H2' Mes) with (SB)HgCI [SB = the Schiff base, 2-(4,4'-N02C6H4CH=NC6H3-Me)] or a methyl ketone (RCOCH3) afforded the corresponding dichlorides (SB)ArTeCI2 (Ar = Np, 1Aa; Mes, 1Ba) or (RCOCH2)ArTeCl2 (Ar = Np; R = Ph (2Aa), Me (3Aa), Np (4Aa); Ar = Mes, R = Ph (2Ba)). Reduction of 1Aa and 1Ba by Na2S205 readily gave the tellurides (SB)ArTe (Ar = Np (1A), Mes, (1B) but that of dichlorides derived from methylketones was complicated due to partial decomposition to tellurium powder and diarylditelluride (Ar2Te2), resulting in poor yields of the corresponding tellurides 2A, 2B and 3A. Oxidation of the isolated tellurides with S02Cl2, Br2 and I2 yielded the corresponding dihalides. All the synthesized compounds have been characterized with the help of IR, 1H, l3C, and 125Te NMR and in the case of 2Aa, and 2Ba by X-ray crystallography. Appearance of only one 125Te signal indicated that the unsymmetric derivatives were stable to disproportionation to symmetric species. Intramolecular 1,4-Te· . ·0 secondary bonding interactions (SBIs) are exhibited in the crystal structures of both the tellurium(IV) dichlorides, 2Aa, and 2Ba. Steric repulsion of the mesityl group in the latter dominates over lone pair-bond pair repulsion, resulting in significant widening of the equatorial C-Te-C angle. This appears to be responsible for the lack of Te· . ·CI involved supramolecular associations in the crystal structure of 2Ba.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions of phenyldithioesters with gold nanoparticles (AuNPs) have been studied by monitoring changes in the surface plasmon resonance (SPR), depolarised light scattering, and surface enhanced Raman spectroscopy (SERS). Changes in the SPR indicated that an AuNP-phenyldithioester charge transfer complex forms in equilibrium with free AuNPs and phenyldithioester. Analysis of the Langmuir binding isotherms indicated that the equilibrium adsorption constant, Kads, was 2.3 ± 0.1 × 106 M−1, which corresponded to a free energy of adsorption of 36 ± 1 kJ mol−1. These values are comparable to those reported for interactions of aryl thiols with gold and are of a similar order of magnitude to moderate hydrogen bonding interactions. This has significant implications in the application of phenyldithioesters for the functionalization of AuNPs. The SERS results indicated that the phenyldithioesters interact with AuNPs through the C═S bond, and the molecules do not disassociate upon adsorption to the AuNPs. The SERS spectra are dominated by the portions of the molecule that dominate the charge transfer complex with the AuNPs. The significance of this in relation to the use of phenyldithioesters for molecular barcoding of nanoparticle assemblies is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of near-infrared and infrared spectroscopy has been used for identification and distinction of basic Cu-sulphates that include devilline, chalcoalumite and caledonite. Near-infrared spectra of copper sulphate minerals confirm copper in divalent state. Jahn-Teller effect is more significant in chalcoalumite where 2B1g ® 2B2g transition band shows a larger splitting (490 cm-1) confirming more distorted octahedral coordination of Cu2+ ion. One symmetrical band at 5145 cm-1 with shoulder band 5715 cm-1 result from the absorbed molecular water in the copper complexes are the combinations of OH vibrations of H2O. One sharp band at around 3400 cm-1 in IR common to the three complexes is evidenced by Cu-OH vibrations. The strong absorptions observed at 1685 and 1620 cm-1 for water bending modes in two species confirm strong hydrogen bonding in devilline and chalcoalumite. The multiple bands in v3 and v4(SO4)2- stretching regions are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. Chalcoalumite, the excellent IR absorber over the range 3800-500 cm-1 is treated as most efficient heat insulator among the Cu-sulphate complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NIR and IR spectroscopy has been applied for detection of chemical species and the nature of hydrogen bonding in arsenate complexes. The structure and spectral properties of copper(II) arsenate minerals chalcophyllite and chenevixite are compared with copper(II) sulphate minerals devilline, chalcoalumite and caledonite. Split NIR bands in the electronic spectrum of two ranges 11700-8500 cm-1 and 8500-7200 cm-1 confirm distortion of octahedral symmetry for Cu(II) in the arsenate complexes. The observed bands with maxima at 9860 and 7750 cm-1 are assigned to Cu(II) transitions 2B1g ® 2B2g and 2B1g ® 2A1g. Overlapping bands in the NIR region 4500-4000 cm-1 is the effect of multi anions OH-, (AsO4)3- and (SO4)2-. The observation of broad and diffuse bands in the range 3700-2900 cm-1 confirms strong hydrogen bonding in chalcophyllite relative to chenevixite. The position of the water bending vibrations indicates the water is strongly hydrogen bonded in the mineral structure. The strong absorption feature centred at 1644 cm-1 in chalcophyllite indicates water is strongly hydrogen bonded in the mineral structure. The H2O-bending vibrations shift to low wavenumbers in chenevixite and an additional band observed at 1390 cm-1 is related to carbonate impurity. The characterisation of IR spectra by ν3 antisymmetric stretching vibrations of (SO4)2- and (AsO4)3 ions near 1100 and 800 cm-1 respectively is the result of isomorphic substitution for arsenate by sulphate in both the minerals of chalcophyllite and chenevixite.