973 resultados para mobilidade de Zn
Resumo:
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Adsorption of Ni(2+), Zn(2+) or Pb(2+) by dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris was studied as a function of contact time and initial metal concentration. The zero point of charge calculated for these biosorbents (pH(zpc) 4.0 and 3.4, respectively) and additional pH tests suggested the use of pH in the range 5.0-5.5 for the experiments. The equilibrium isotherms were evaluated in terms of maximum sorption capacity and sorption affinity. The pseudo first and second order kinetic models were considered to interpret the experimental data, and the latter best described the adsorption system. Both the Freundlich and Langmuir models were shown to well describe the sorption isotherms, thus suggesting an intermediate mono/multilayer sorption mechanism. Compared to A. platensis (q(e) = 0.354, 0.495 and 0.508 mmol g(-1) for Ni(2+), Pb(2)+ and Zn(2+), respectively), C. vulgaris behaved as a better biosorbent because of higher equilibrium sorption capacity (q(e) = 0.499, 0.634 and 0.664 mmol g(-1), respectively). The removal efficiency decreased with increasing metal concentration, pointing out a passive adsorption process involving the active sites on the surface of the biomasses. The FT-IR spectroscopy evidenced that ions removal occurred mainly by interaction between metal and carboxylate groups present on both the cell walls. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
New mixed Li/Mg and Li/Mg/Zn amides have been synthesized starting from readily prepared secondary amines. They allow a highly chemoselective directed magnesiation or zincation of various polyfunctional aromatics and heteroaromatics. The kinetic basicity, solubility and stability of these new bases have been compared with those of the corresponding 2,2,6,6-tetramethylpiperamide-derived bases. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
The title pendent-arm macrocyclic hexaamine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous Ni-II and Zn-II complexes (both as perchlorate salts), namely (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)nickel(II) diperchlorate, [Ni(C12H30N6)](ClO4)(2), and (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)zinc(II) diperchlorate, [Zn(C-12 H30N6)](ClO4)(2). Distortion of the N-M-N valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.
Resumo:
The reported experimental work on the systems Fe-Zn-O and Fe-Zn-Si-O in equilibrium with metallic iron is part of a wider research program that combines experimental and thermodynamic computer modeling techniques to characterize zinc/lead industrial slags and sinters in the system PbO-ZnO-SiO2-CaO-FeO-Fe2O3. Extensive experimental,investigations using high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA) were carried out. Special experimental; procedures were developed to enable accurate measurements in these ZnO-containing systems to be performed in equilibrium with metallic iron; The systems Fe-Zn-O and FeZn-Si-O were experimentally investigated in equilibrium with metallic iron in the temperature ranges 900 degreesC to 1200 degreesC (1173 to 1473 K) and from 1000 degreesC to 1350 degreesC (1273 to 1623 K), respectively. The liquidus surface in the system Fe-Zn-Si-O in equilibrium with metallic iron was characterized in the composition ranges 0 to 33 wt pet ZnO and 0 to 40 wt pet SiO2. The wustite (Fe,Zn)O, zincite (Zn,Fe)O, willemite (Zn,Fe)(2)SiO4, arid fayalite: (Fe,Zn)(2)SiO4 solid solutions in equilibrium with metallic iron were measured.
Resumo:
Experimental and thermodynamic modeling studies have been carried out on the Zn-Fe-Si-O system. This research is part of a wider program to characterize zinc/lead industrial slags and sinters in the PbO-ZnO-SiO2-CaO-FeO-Fe2O3 system. Experimental investigations involve high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Liquidus temperatures and solid solubilities of the crystalline phases were measured in the temperature range from 1200 °C to 1450 °C (1473 to 1723 K) in the zinc ferrite, zincite, willemite, and tridymite primary-phase fields in the Zn-Fe-Si-O system in air. These equilibrium data for the Zn-Fe-Si-O system in air, combined with previously reported data for this system, were used to obtain an optimized self-consistent set of parameters of thermodynamic models for all phases.
Resumo:
Trace elements can have a significant effect on the processing and properties of aluminium alloys, including sintered alloys. As little as 0.07 wt% (100 ppm) lead, tin or indium promotes sintering in an Al-Zn-Mg-Cu alloy produced from mixed elemental powders. This is a liquid phase sintering system and thin liquid films form uniformly throughout the alloy in the presence of the trace elements, but liquid pools develop in their absence. Analytical transmission electron microscopy indicates that the trace elements are confined to the interparticle and grain boundary regions. The sintering enhancement is attributed to the segregation of the microalloying addition to the liquid-vapour interface. Because the microalloying elements have a low surface tension, they lower the effective surface tension of the liquid. This reduces the wetting angle and extends the spreading of the liquid through the matrix. An improvement in sintering results. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(l) per CopZ and two copper(l) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(1)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(1)(2)CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(l)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper. from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(l) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange: a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.
Resumo:
Solid solution effects on the hardness and flow stress have been studied for zinc contents between 0.2 and 2.4 at% (0.5 and 6.9 wt%) in Mg. The alloys were grain refined with 0.6 wt% zirconium to ensure a similar grain size at all compositions. The hardness increases with the zinc content as Hv(10) (kg mm(-2)) = 9 Zn (at%) + 33. At low solute concentrations the (0.2%) proof strength does not change significantly with concentration. At concentrations above 0.7 at%, within the supersaturated solid solution region, the rate of solid solution hardening is high, following a c(2) rule, where c is the atom fraction of Zn. It is suggested that short-range order may account for most of the observed strengthening in concentrated Mg-Zn alloys.
Resumo:
New mono- and bis-chelated zinc(II) and cadmium(II) complexes of formula, [M(dpksbz)NCS] (dpksbz = anionic form of the di-2-pyridylketone Schiff base of S-benzyldithiocarbazate) and [M(dpksbz)(2)] (M = Zn-II, Cd-II) have been prepared and characterized. The structure of the bis-ligand complex, [Zn(dpksbZ)(2)] has been determined by X-ray diffraction. The complex has a distorted octahedral geometry in which the ligands are coordinated to the zinc(II) ion as uninegatively charged tridentate chelates via the thiolate sulfur atoms, the azomethine nitrogen atoms and the pyridine nitrogen atoms. The distortion from a regular octahedral geometry is attributed to the restricted bite angles of the Schiff base ligands. X-ray structural analysis shows that the [Cd(dpksbz)NCS](2) complex is a centrosymmetric dimer in which each of the cadmium(II) ions adopts a five-coordinate, approximately square-pyramidal configuration with the Schiff base acting as a tetradentate chelating agent coordinating a cadmium(II) ion via one of the pyridine nitrogen atoms, the azomethine nitrogen atom and the thiolate sulfur atom; the second pyridine nitrogen atom is coordinated to the other cadmium(II) ion of the dimer. The fifth coordination position around each cadmium(II) is occupied by an N-bonded thiocyanate ligand. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Esse trabalho teve como objetivo analisar os efeitos relacionados ?? mobilidade social e ao empoderamento das benefici??rias do Programa Bolsa Fam??lia em Minas Gerais. Foram utilizados procedimentos metodol??gicos anal??ticos, em um estudo de caso m??ltiplo com abordagem quantitativa. Foi realizada a valida????o dos constructos de mobilidade social e empoderamento, permitindo-se mensurar a intensidade da rela????o entre essas diferentes dimens??es. Os resultados demonstram a melhoria significativa na vida das benefici??rias, o que pode possibilitar ascend??ncia social. Contudo, observou-se, como fator limitante, o baixo grau de escolaridade das benefici??rias, mostrando-se a necessidade de conex??o dos programas sociais com atividades educacionais e de gera????o de trabalho e renda, para inser????o das mulheres no mercado de trabalho. Dessa forma, considera-se que o Programa Bolsa Fam??lia pode influenciar significativamente tanto no empoderamento quanto na mobilidade social das benefici??rias. Ademais, a articula????o com atividades educacionais e produtivas pode avigorar os resultados de pol??ticas p??blicas que defendam a justi??a social e a diminui????o das desigualdades existentes entre g??neros e classes sociais.