948 resultados para mitogen activated protein kinase p38 inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of cells with a variety of growth factors triggers a phosphorylation cascade that leads to activation of mitogen-activated protein kinases (MAPKs, also called extracellular signal-regulated kinases, or ERKs). We have identified a synthetic inhibitor of the MAPK pathway. PD 098059 [2-(2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one] selectively inhibited the MAPK-activating enzyme, MAPK/ERK kinase (MEK), without significant inhibitory activity of MAPK itself. Inhibition of MEK by PD 098059 prevented activation of MAPK and subsequent phosphorylation of MAPK substrates both in vitro and in intact cells. Moreover, PD 098059 inhibited stimulation of cell growth and reversed the phenotype of ras-transformed BALB 3T3 mouse fibroblasts and rat kidney cells. These results indicate that the MAPK pathway is essential for growth and maintenance of the ras-transformed phenotype. Further, PD 098059 is an invaluable tool that will help elucidate the role of the MAPK cascade in a variety of biological settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oesophageal cancer is an aggressive tumour which responds poorly to both chemotherapy and radiation therapy and has a poor prognosis. Thus, a greater understanding of the biology of oesophageal cancer is needed in order to identify novel therapeutic targets. Among these targets p38 MAPK isoforms are becoming increasingly important for a variety of cellular functions. The physiological functions of p38α and -β are now well documented in contrast to -γ and -δ which are comparatively under-studied and ill-defined. A major obstacle to deciphering the role(s) of the latter two p38 isoforms is the lack of specific chemical activators and inhibitors. In this study, we analysed p38 MAPK isoform expression in oesophageal cancer cell lines as well as human normal and tumour tissue. We observed specifically differential p38δ expression. The role(s) of p38δ and active (phosphorylated) p38δ (p-p38δ) in oesophageal squamous cell carcinoma (OESCC) was delineated using wild-type p38δ as well as active p-p38δ, generated by fusing p38δ to its upstream activator MKK6b(E) via a decapeptide (Gly-Glu)5 linker. OESCC cell lines which are p38δ-negative (KE-3 and -8) grew more quickly than cell lines (KE-6 and -10) which express endogenous p38δ. Re-introduction of p38δ resulted in a time-dependent decrease in OESCC cell proliferation which was exacerbated with p-p38δ. In addition, we observed that p38δ and p-p38δ negatively regulated OESCC cell migration in vitro. Finally both p38δ and p-p38δ altered OESCC anchorage-independent growth. Our results suggest that p38δ and p-p38δ have a role in the suppression of OESCC. Our research may provide a new potential target for the treatment of oesophageal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We performed a multi-centre phase I study to assess the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of the orally available small molecule mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, WX-554, and to determine the optimal biological dose for subsequent trials.
Experimental design: Patients with treatment-refractory, advanced solid tumours, with adequate performance status and organ function were recruited to a dose-escalation study in a standard 3 + 3 design. The starting dose was 25 mg orally once weekly with toxicity, PK and PD guided dose-escalation with potential to explore alternative schedules.
Results: Forty-one patients with advanced solid tumours refractory to standard therapies and with adequate organ function were recruited in eight cohorts up to doses of 150 mg once weekly and 75 mg twice weekly. No dose-limiting toxicities were observed during the study, and a maximum tolerated dose (MTD) was not established. The highest dose cohorts demonstrated sustained inhibition of extracellular signal-regulated kinase (ERK) phosphorylation in peripheral blood mononuclear cells following ex-vivo phorbol 12-myristate 13-acetate stimulation. There was a decrease of 70 ± 26% in mean phosphorylated (p)ERK in C1 day 8 tumour biopsies when compared with pre-treatment tumour levels in the 75 mg twice a week cohort. Prolonged stable disease (>6 months) was seen in two patients, one with cervical cancer and one with ampullary carcinoma.
Conclusions: WX-554 was well tolerated, and an optimal biological dose was established for further investigation in either a once or twice weekly regimens. The recommended phase 2 dose is 75 mg twice weekly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In addition to its haemodynamic effects, angiotensin II (AngII) is thought to contribute to the development of cardiac hypertrophy via its growth factor properties. The activation of mitogen-activated protein kinases (MAPK) is crucial for stimulating cardiac growth. Therefore, the present study aimed to determine whether the trophic effects of AngII and the AngII-induced haemodynamic load were associated with specific cardiac MAPK pathways during the development of hypertrophy. Methods The activation of the extracellular-signal-regulated kinase (ERK), the c-jun N-terminal kinase (JNK) and the p38 kinase was followed in the heart of normotensive and hypertensive transgenic mice with AngII-mediated cardiac hypertrophy. Secondly, we used physiological models of AngII-dependent and AngII-independent renovascular hypertension to study the activation of cardiac MAPK pathways during the development of hypertrophy. RESULTS: In normotensive transgenic animals with AngII-induced cardiac hypertrophy, p38 activation is associated with the development of hypertrophy while ERK and JNK are modestly stimulated. In hypertensive transgenic mice, further activation of ERK and JNK is observed. Moreover, in the AngII-independent model of renovascular hypertension and cardiac hypertrophy, p38 is not activated while ERK and JNK are strongly stimulated. In contrast, in the AngII-dependent model, all three kinases are stimulated. CONCLUSIONS: These data suggest that p38 activation is preferentially associated with the direct effects of AngII on cardiac cells, whereas stimulation of ERK and JNK occurs in association with AngII-induced mechanical stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Lipoproteins play a critical role in the development of atherosclerosis, which might result partly from their capacity to induce specific intracellular signaling pathways. The goal of this review is to summarize the signaling properties of lipoproteins, in particular, their capacity to induce activation of mitogen-activated protein kinase pathways and the resulting modulation of cellular responses in blood vessel cells. RECENT FINDINGS: Lipoproteins activate the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in all blood vessel cell types. This may require lipoprotein docking to scavenger receptor B1, allowing transfer of cholesterol and sphingosine-1-phosphate to plasma membranes. Subsequent propagation of the signals probably requires the stimulation of G protein-coupled receptors, followed by the transactivation of receptor tyrosine kinases. Lipoprotein-induced extracellular signal-regulated kinase activity favors cell proliferation, whereas lipoprotein-induced p38 mitogen-activated protein kinase activity leads to cell hyperplasia and promotes cell migration. Some signaling pathways and cellular effects induced by lipoproteins have been observed in atherosclerotic plaques and therefore represent potential targets for the development of anti-atherosclerotic drugs. SUMMARY: The main blood vessel cell types have the capacity to activate protein kinase pathways in the presence of lipoproteins. This induces cell proliferation, hyperplasia and migration, known to be dysregulated in atherosclerotic lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using primary cultures of neonatal rat ventricular myocytes and isolated adult rat hearts as models, we have characterized extensively the regulation of MAPKs in the heart. The ERKs are activated primarily by GPCR agonists acting through PKC. These agonists can also activate the JNKs although the mechanism is unclear. Cellular stresses stimulate strong activation of the JNKs, but also cause some stimulation of ERKs. Activation of p38-MAPK has so far only been demonstrated in intact adult hearts subjected to stresses and probably leads to activation of MAPKAPK2. Both cellular stresses and GPCR agonists induce phosphorylation of c-Jun, but only the latter causes upregulation of c-Jun protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms by which herbivore-attacked plants activate their defenses are well studied. By contrast, little is known about the regulatory mechanisms that allow them to control their defensive investment and avoid a defensive overshoot. We characterized a rice (Oryza sativa) WRKY gene, OsWRKY53, whose expression is rapidly induced upon wounding and induced in a delayed fashion upon attack by the striped stem borer (SSB) Chilo suppressalis. The transcript levels of OsWRKY53 are independent of endogenous jasmonic acid but positively regulated by the mitogen-activated protein kinases OsMPK3/OsMPK6. OsWRKY53 physically interacts with OsMPK3/OsMPK6 and suppresses their activity in vitro. By consequence, it modulates the expression of defensive, MPK-regulated WRKYs and thereby reduces jasmonic acid, jasmonoyl-isoleucine, and ethylene induction. This phytohormonal reconfiguration is associated with a reduction in trypsin protease inhibitor activity and improved SSB performance. OsWRKY53 is also shown to be a negative regulator of plant growth. Taken together, these results show that OsWRKY53 functions as a negative feedback modulator of MPK3/MPK6 and thereby acts as an early suppressor of induced defenses. OsWRKY53 therefore enables rice plants to control the magnitude of their defensive investment during early signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p38 mitogen-activated protein kinase is activated by treatment of cells with cytokines and by exposure to environmental stress. The effects of these stimuli on p38 MAP kinase are mediated by the MAP kinase kinases (MKKs) MKK3, MKK4, and MKK6. We have examined the function of the p38 MAP kinase signaling pathway by investigating the effect of targeted disruption of the Mkk3 gene. Here we report that Mkk3 gene disruption caused a selective defect in the response of fibroblasts to the proinflammatory cytokine tumor necrosis factor, including reduced p38 MAP kinase activation and cytokine expression. These data demonstrate that the MKK3 protein kinase is a critical component of a tumor necrosis factor-stimulated signaling pathway that causes increased expression of inflammatory cytokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SEK1 (MKK4/JNKK) is a mitogen-activated protein kinase activator that has been shown to participate in vitro in two stress-activated cascades terminating with the SAPK and p38 kinases. To define the role of SEK1 in vivo, we studied stress-induced signaling in SEK1−/− embryonic stem and fibroblast cells and evaluated the phenotype of SEK1−/− mouse embryos during development. Studies of SEK1−/− embryonic stem cells demonstrated defects in stimulated SAPK phosphorylation but not in the phosphorylation of p38 kinase. In contrast, SEK1−/− fibroblasts exhibited defects in both SAPK and p38 phosphorylation, demonstrating that crosstalk exists between the stress-activated cascades. Tumor necrosis factor α and interleukin 1 stimulation of both stress-activated cascades are severely affected in the SEK1−/− fibroblast cells. SEK1 deficiency leads to embryonic lethality after embryonic day 12.5 and is associated with abnormal liver development. This phenotype is similar to c-jun null mouse embryos and suggests that SEK1 is required for phosphorylation and activation of c-jun during the organo-genesis of the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by phosphorylation on Thr and Tyr. Here we report the molecular cloning of a new member of the mammalian MAP kinase kinase group (MKK7) that functions as an activator of JNK. In vitro protein kinase assays demonstrate that MKK7 phosphorylates and activates JNK, but not the p38 or extracellular signal-regulated kinase groups of MAP kinase. Expression of MKK7 in cultured cells causes activation of the JNK signal transduction pathway. MKK7 is therefore established to be a novel component of the JNK signal transduction pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Abl is a ubiquitously expressed protein tyrosine kinase activated by DNA damage and implicated in two responses: cell cycle arrest and apoptosis. The downstream pathways by which c-Abl induces these responses remain unclear. We examined the effect of overexpression of c-Abl on the activation of mitogen-activated protein kinase pathways and found that overexpression of c-Abl selectively stimulated p38, while having no effect on c-Jun N-terminal kinase or on extracellular signal-regulated kinase. c-Abl-induced p38 activation was primarily mediated by mitogen-activated protein kinase kinase (MKK)6. A C-terminal truncation mutant of c-Abl showed no activity for stimulating p38 and MKK6, while a kinase-deficient c-Abl mutant still retained a residual activity. We tested different forms of c-Abl for their ability to induce apoptosis and found that apoptosis induction correlated with the activation of the MKK6-p38 kinase pathway. Importantly, dominant-negative MKK6, but not dominant-negative MKK3 or p38, blocked c-Abl-induced apoptosis. Because overexpression of p38 blocks cell cycle G1/S transition, we also tested whether the MKK6-p38 pathway is required for c-Abl-induced cell cycle arrest, and we found that neither MKK6 nor p38 dominant-negative mutants could relieve c-Abl-induced cell cycle arrest. Finally, DNA damage-induced MKK6 and p38 activation was diminished in c-Abl null fibroblasts. Our study suggests that c-Abl is required for DNA damage-induced MKK6 and p38 activation, and that activation of MKK6 by c-Abl is required for c-Abl-induced apoptosis but not c-Abl-induced cell cycle arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have added constitutively active MAP kinase/ERK kinase (MEK), an activator of the mitogen-activated protein kinase (MAPK) signaling pathway, to cycling Xenopus egg extracts at various times during the cell cycle. p42MAPK activation during entry into M-phase arrested the cell cycle in metaphase, as has been shown previously. Unexpectedly, p42MAPK activation during interphase inhibited entry into M-phase. In these interphase-arrested extracts, H1 kinase activity remained low, Cdc2 was tyrosine phosphorylated, and nuclei continued to enlarge. The interphase arrest was overcome by recombinant cyclin B. In other experiments, p42MAPK activation by MEK or by Mos inhibited Cdc2 activation by cyclin B. PD098059, a specific inhibitor of MEK, blocked the effects of MEK(QP) and Mos. Mos-induced activation of p42MAPK did not inhibit DNA replication. These results indicate that, in addition to the established role of p42MAPK activation in M-phase arrest, the inappropriate activation of p42MAPK during interphase prevents normal entry into M-phase.