985 resultados para minerals
Resumo:
The near-infrared (NIR) and infrared (IR) spectroscopy has been applied for characterisation of three complex Cu-Zn sulphate/phosphate minerals, namely ktenasite, orthoserpierite and kipushite. The spectral signatures of the three minerals are quite distinct in relation to their composition and structure. The effect of structural cations substitution (Zn2+ and Cu2+) on band shifts is significant both in the electronic and vibrational spectra of these Cu-Zn minerals. The variable Cu:Zn ratio between Zn-rich and Cu-rich compositions shows a strong effect on Cu(II) bands in the electronic spectra. The Cu(II) spectrum is most significant in kipushite (Cu-rich) with bands displayed at high wavenumbers at11390 and 7545 cm-1. The isomorphic substitution of Cu2+ for Zn2+ is reflected in the NIR and IR spectroscopic signatures. The multiple bands for 3 and 4 (SO4)2- stretching vibrations in ktenasite and orthoserpierite are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. The IR spectrum of kipushite is characterised by strong (PO4)3- vibrational modes at 1090 and 990 cm-1. The range of IR absorption is higher in Ktenasite than in kipushite while it is intermediate in orthoserpierite.
Resumo:
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.
Resumo:
A zoisite group of mineral samples from different localities are used in the present study. An EPR study on powdered samples confirms the presence of Mn(II), Fe(III) and Cr(III) in the minerals. NIR studies confirm the presence of these ions in the minerals.
Resumo:
The Raman spectra of a series of related minerals of the pinakiolite group of minerals have been collected and the spectra related to the mineral structure. These minerals are based upon an isolated BO33- ion. The site symmetry is reduced from D3h to C1. Intense Raman bands are observed for the minerals takeuchiite, pinakiolite, fredrikssonite and azoproite at 1084, 1086, 1086 and 1086 cm-1. These bands are assigned to the ν1 BO33- symmetric stretching mode. Low intensity Raman bands are observed for the minerals at 1345, 1748; 1435, 1748; 1435, 1750; 1436, 1749 cm-1. One probable assignment is to ν3 BO33- antisymmetric stretching mode. Intense Raman bands of takeuchiite, pinakiolite, fredrikssonite and azoproite at 712 cm-1 attributed to the ν2 out-of-plane bending mode. Importantly, through the comparison of the Raman spectra, the molecular structure of borate minerals with ill-defined structures can be obtained.
Resumo:
The mixed valency (M2+M3+) sulphate minerals, römerite Fe2+Fe23+(SO4)4•14H2O and botryogen Mg2+Fe3+(SO4)2(OH).7H2O have been studied by Raman spectroscopy. The Raman spectra of the two types of crystals proved very similar but not identical. The observation of two symmetric stretching modes confirmed the presence of the two non-equivalent sulphate units in the römerite structure. The observation of multiple bands in the antisymmetric stretching region and in the bending regions proves the symmetry of the sulphate anion is significantly reduced in the römerite structure. The number of Raman bands related to the (SO4)2- symmetric and antisymmetric vibrations support the X-ray single crystal structure conclusion that two symmetrically distinct S6+ are present in the structure of botryogen. Römerite is a mineral of environmental significance as it is commonly found in tailings and dumps.
Resumo:
The importance of NIR spectroscopy has been successfully demonstrated in the present study of smithsonite minerals. The fundamental observations in the NIR spectra, in addition to the anions of OH- and CO32- are Fe and Cu in terms of cation content. These ions exhibit broad absorption bands ranging from 13000 to 7000cm-1 (0.77 to 1.43 µm). One broad diagnostic absorption feature centred at 9000 cm-1 (1.11 µm) is the result of ferrous ion spin allowed transition, (5T2g ® 5Eg). The splitting of this band (>1200 cm-1) is a common feature in all the spectra of the studied samples. The light green coloured sample from Namibia show two Cu(II) bands in NIR at 8050 and 10310 cm-1 (1.24 and 0.97 µm) are assigned to 2B1g ® 2A1g and 2B1g ® 2B2g transitions. The effects of structural cations substitution (Ca2+, Fe2+, Cu2+, Cd2+ and Zn2+) on band shifts in the electronic spectra1 region of 11000-7500 cm-1 (0.91-1.33 µm) and vibrational modes of OH- and CO32- anions in 7300 to 4000 cm-1 (1.37-2.50 µm) region were used to distinguish between the smithsonites.
Resumo:
Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the soil minerals destinezite and diadochite. These two minerals are identical except for their morphology. Diadochite is amorphous whereas destinezite is crystalline. Both minerals are found in soils. It is important to understand the stability of these minerals because soils are subject to bush fires especially in Australia. The thermal analysis patterns of the two minerals are similar but not identical. Subtle differences are observed in the DTG patterns. For destinezite, two DTG peaks are observed at 129 and 182°C attributed to the loss of hydration water, whereas only a broad peak with maximum at 84°C is observed for diadochite. Higher temperature mass losses at 685°C for destinezite and 655°C for diadochite, based upon the ion current curves, are due to sulphate decomposition. This research has shown that at low temperatures the minerals are stable but at high temperatures, as might be experienced in a bush fire, the minerals decompose.
Resumo:
Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)•2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H...O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases.
Resumo:
The two minerals diadochite and destinezite of formula Fe2(PO4,SO4)2(OH)•6H2O have been characterised by Raman spectroscopy and complimented with infrared spectroscopy. These two minerals are both found in soils and are identical except for their morphology. Diadochite is amorphous whereas destinezite is highly crystalline. The spectra of diadochite are broad and ill-defined, whereas the spectra of destinezite are intense and well defined. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.
Resumo:
The molecular structure of the mineral archerite ((K,NH4)H2PO4) has been determined and compared with that of biphosphammite ((NH4,K)H2PO4). Raman spectroscopy and infrared spectroscopy has been used to characterise these ‘cave’ minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. The Raman band at 981 cm-1 is assigned to the HOP stretching vibration. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.
Resumo:
This thesis concentrates on the characterisation of selected arsenite, antimonite, and hydroxyantimonate minerals based on their vibrational spectra. A number of natural arsenite and antimonite minerals were studied by single crystal Raman spectroscopy in order to determine the contribution of bridging and terminal oxygen atoms to the vibrational spectra. A series of natural hydrated antimonate minerals was also compared and contrasted using single crystal Raman spectroscopy to determine the contribution of the isolated antimonate ion. The single crystal data allows each band in the spectrum to be assigned to a symmetry species. The contribution of bridging and terminal oxygen atoms in the case of the arsenite and antimonite minerals was determined by factor group analysis, the results of which are correlated with the observed symmetry species. In certain cases, synthetic analogues of a mineral and/or synthetic compounds isostructural or related to the mineral of interest were also prepared. These synthetic compounds are studied by non-oriented Raman spectroscopy to further aid band assignments of the minerals of interest. Other characterisation techniques include IR spectroscopy, SEM and XRD. From the single crystal data, it was found that good separation between different symmetry species is observed for the minerals studied.