961 resultados para mild hyperglycemia
Resumo:
Abstract Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did not impair gonadotropin levels or estrous cylicity but ovarian steroid concentrations were altered. Conclusions In female Wistar rats, neonatal STZ treatment impairs growth in infancy and results in mild hyperglycemia/hypoinsulinemia in adulthood that is associated with changes in the response to a novel environment and altered ovarian steroid hormone levels.
Resumo:
In type 2 diabetes (DM2) there is progressive deterioration in beta-cell function and mass. It was found that islet function was about 50% of normal at the time of diagnosis and reduction in beta-cell mass of about 60% at necropsy (accelerated apoptosis). Among the interventions to preserve the beta-cells, those to lead to short-term improvement of beta-cell secretion are weight loss, metformin, sulfonylureas, and insulin. The long-term improvement was demonstrated with short-term intensive insulin therapy of newly diagnosed DM2, the use of antiapoptotic drugs such as glitazones, and the use of glucagon-like peptide-1 receptor agonists (GLP-1 mimetics), not inactivated by the enzyme dipeptidyl peptidase 4 and/or to inhibit that enzyme (GLP-1 enhancers). The incretin hormones are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas and overall maintenance of glucose homeostasis. From the two major incretins, GLP-1 and GIP (glucose-dependent insulinotropic polypeptide), only the first one or its mimetics or enhancers can be used for treatment. The GLP-1 mimetics exenatide and liraglutide as well as the DPP4 inhibitors (sitagliptin and vildagliptin) were approved for treatment of DM2.
Resumo:
Hyperglycemia occurs in a variety of conditions such as overt diabetes, gestational diabetes and mild hyperglycemia, all of which are generally defined based on the oral glucose tolerance test and glucose profiles. Whereas diabetes has received considerable attention in recent decades, few studies have examined the mechanisms of mild hyperglycemia and its associated disturbances. Mild gestational hyperglycemia is associated with macrosomia and a high risk of perinatal mortality. Morphologically, the placenta of these women is characterized by an increase in the number of terminal villi and capillaries, presumably as part of a compensatory mechanism to maintain homeostasis at the maternal-fetal interface. In this study, we analised the expression of VEGF and its receptors VEGFR-1 (Flt-1) and VEGFR-2 (KDR) in placentas from mildly hyperglycemic women. This expression was compared with that of normoglycemic women and women with gestational and overt diabetes. Immunohistochemistry revealed strong staining for VEGF and VEGFR-2 in vascular and trophoblastic cells of mildly hyperglycemic women, whereas the staining for VEGFR-1 was discrete and limited to the trophoblast. The pattern of VEGF and VEGF-receptor reactivity in placentas from women with overt diabetes was similar to that of normoglycemic women. In women with gestational diabetes, strong staining for VEGFR-1 was observed in vascular and trophoblastic cells whereas VEGF and VEGFR-2 were detected only in the trophoblast. The expression of these proteins was confirmed by western blotting, which revealed the presence of an additional band of 75 kDa. In the decidual compartment, only extravillous trophoblast reacted with all antibodies. Morphological analysis revealed collagen deposition around large arteries in all groups with altered glycemia. These findings indicate a placental response to altered glycemia that could have important consequences for the fetus. The change in the placental VEGF/VEGFR expression ratio in mild hyperglycemia may favor angiogenesis in placental tissue and could explain the hypercapillarization of villi seen in this gestational disturbance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: There is no evidence about the integrated issue on glycemia, lipid profile, oxidative stress, and anomaly frequency of pregnant diabetic rats neonatally exposed to streptozotocin.Objective: Evaluating the impact of hyperglycemia in diabetic rats neonatally exposed to streptozotocin on maternal reproductive and fetal outcomes and the relationship with lipid profile and maternal oxidative stress.Material and Methods: Ten 90-day-old female Wistar rats were mated to obtain offspring. Some of these newborns received streptozotocin (70 mg/kg, i.p. - n5-STZ group) and the remainder given only citrate buffer (control group) on their day 5 of life. At adult life, these rats (n =13 animals/group) were mated and, at day 21 of pregnancy, they were killed to obtain a maternal blood samples for biochemical determinations. The gravid uterus was weighed with its contents and fetuses were analyzed.Results: At day 0 of pregnancy, glycemic means of n5-STZ rats were significantly greater compared to those of control rats, but presented fetuses classified as small for pregnancy age. The n5-STZ rats showed increased total cholesterol, triglycerides, MDA concentrations, lower SOD activity and increased frequency fetal visceral anomalies as compared to the control group.Conclusion: This study showed that the experimental model used led to mild hyperglycemia during pregnancy, although it did not lead to increased macrosomic fetus rates. The hyperglycemic maternal environment caused metabolic alterations, including increased triglyceride and total cholesterol concentrations, and elevated oxidative stress, contributing to increase fetal visceral anomalies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Protein-calorie malnutrition produces glucose intolerance and reduced insulin release in response to glucose. Rats adapted to low- or high-protein diets show an increased resistance to the diabetogenic action of a single dose of streptozotocin or alloxan. To determine the effects of dietary protein level on pancreatic function, we measured serum glucose levels under basal conditions and during the oral glucose tolerance test (GTT) performed before and after a single dose of alloxan administered to rats fed a 25% or a 6% protein diet for a period of 8 weeks. The incidence of mild hyperglycemia (serum glucose > 250 mg/dl) was greater among the rats fed the 25% protein diet (81%) than among those fed the 6% protein diet (42%). During the GTT performed before alloxan administration the serum glucose levels of the rats fed the 6% protein diet were not found to be significantly different from those of rats fed the 25% protein diet. During the GTT performed after alloxan injection all rats showed intolerance to the substrate (serum glucose > 160 mg/dl 120 min after glucose administration) regardless of whether basal serum glucose was normal or high. In summary, alloxan was less effective in producing basal hyperglycemia in the rats fed the 6% protein diet than in those fed the 25% protein diet but caused glucose intolerance during the oral GTT in both groups. Thus, it seems that feeding a 6% protein diet to rats offers only partial protection against the toxic effects of alloxan.
Resumo:
Objective: To evaluate data from patients with normal oral glucose tolerance test (OGTT) results and a normal or impaired glycemic profile (GP) to determine whether lower cutoff values for the OGTT and GP (alone or combined) could identify pregnant women at risk for excessive fetal growth. Methods: We classified 701 pregnant women with positive screening for gestational diabetes mellitus (GDM) into 2 categories - (1) normal 100-g OGTT and normal GP and (2) normal 100-g OGTT and impaired GP - to evaluate the influence of lower cutoff points in a 100-g OGTT and GP (alone or in combination) for identification of pregnant women at excessive fetal growth risk. The OGTT is considered impaired if 2 or more values are above the normal range, and the GP is impaired if the fasting glucose level or at least 1 postprandial glucose value is above the normal range. To establish the criteria for the OGTT (for fasting and 1, 2, and 3 hours after an oral glucose load, respectively), we considered the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL), mean plus 1 SD (85 mg/dL, 151 mg/dL, 133 mg/dL, and 118 mg/dL), and mean plus 2 SD (95 mg/dL, 182 mg/dL, 153 mg/dL, and 139 mg/dL); and for the GP, we considered the mean and mean plus 1 SD (78 mg/dL and 92 mg/dL for fasting glucose levels and 90 mg/dL and 130 mg/dL for 1- or 2-hour postprandial glucose levels, respectively). Results: Subsequently, the women were reclassified according to the new cutoff points for both tests (OGTT and GP). Consideration of values, in isolation or combination, yielded 6 new diagnostic criteria. Excessive fetal growth was the response variable for analysis of the new cutoff points. Odds ratios and their respective confidence intervals were estimated, as were the sensitivity and specificity related to diagnosis of excessive fetal growth for each criterion. The new cutoff points for the tests, when used independently rather than collectively, did not help to predict excessive fetal growth in the presence of mild hyperglycemia. Conclusion: Decreasing the cutoff point for the 100-g OGTT (for fasting and 1, 2, and 3 hours) to the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL) in association with the GP (mean or mean plus 1 SD-78 mg/dL and 92 mg/dL for the fasting state and 90 mg/dL and 130 mg/dL for 1- or 2-hour postprandial values-increased the sensitivity and specificity, and both criteria had statistically significant predictive power for detection of excessive fetal growth. © 2008 AACE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB
Resumo:
Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1tg/+ mice). Here, we tested the hypothesis that elevated β-cell 11beta-HSD1 protects against the β-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune β-cell destruction. MIP-HSD1tg/+ mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained β-cell survival, maintained β-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1tg/+ mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1tg/+ islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within β-cells protects against inflammatory β-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation.