26 resultados para microsporogenesis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Embryological studies indicate Eupatorium laevigatum to have Antennaria type diplospory with precocious embryony. The embryo sac is of the Polygonum type and the polar nuclei fuse before anthesis (maturation of the stamens). Endosperm development is autonomous and the central cell divides only after the initial stages of embryo formation. It is estimated that about 10% of the florets in anthesis contain an undivided egg which can be used for sexual reproduction. The study of microsporogenesis revealed abnormalities in chromosome pairing which result in the formation of univalents, bivalents, trivalents and higher polyvalents, with the consequent production of lagging chromosomes, unbalanced nuclei, micronuclei and sterile pollen. We found that, as represented by the material studied, E. laevigatum is an autohexaploid (2n = 6x = 60) in which each chromosome of a basic set of ten chromosomes is repeated six times and that E. laevigatum is an essentialy obligate apomictic.
Resumo:
A detailed study of floral ontogeny, anatomy, and embryology in two (of six) species of Pharus is presented as part of a series of comparative investigations on early-divergent grasses. Pharus is a taxonomically isolated genus belonging to the earliest-diverging grass lineage with a true grass spikelet. It is unusual in possessing remarkably dimorphic florets: male florets possess two lodicules, six stamens, and a pistillode, whereas female florets lack lodicules entirely but possess six staminodes and a tricarpellary ovary with three stigmas. The rudimentary lodicules in male florets are initiated after the stamen whorls. There are most commonly six androecial organs, but in some florets, a five-staminate condition was observed, resulting from suppression of the abaxial stamen from the inner whorl, or even a four-staminate condition resulting from subsequent fusion of the two adaxial outer stamens (i.e., elements of both whorls). Thus, the pattern of floral zygomorphy in Pharus differs from that of many other grasses. Centrifixed anther attachment is reported for the first time in Pharus, resembling the condition in another early-divergent grass, Anomochloa, though anthers are introrse in Anomochloa compared with latrorse in Pharus. Anther wall development is of the reduced type in Pharus, in contrast to most other monocots. Microsporogenesis is of the successive type, as in many other monocots. The ovary develops from three distinct primordia and is unilocular with a single ovule and a pronounced ovary beak that is highly characteristic of Pharus. There is a hollow style, in contrast to the solid styles that are common in many other grasses. The embryo is highly differentiated, as in other grasses, with a distinct epiblast and a small cleft between the scutellum and the coleorhiza.
Resumo:
The embryology and the seed development of Syngonanthus caulescens are presented. This species possesses: a bithecous and tetrasporangiate anther, with a four-layered wall, a conspicuous endothecium of the baseplate type, a secretory tapetum formed by uninucleate cells, successive microsporogenesis resulting in isobilateral microspore tetrads, spiraperturate and binucleate pollen grains, an orthotropous, pendulous, bitegmic and terminucellate ovule, with a micropyle formed only by the inner integument, a megagametophyte of the Polygonum type, with formation of an antipodal cyst, free-nuclear and starchy endosperm, a broad and bell-shaped embryo, operculate and endotestal seeds, a seed coat derived from the inner layers of both integuments, and tanniniferous endotegmen. These embryological aspects are characteristic not only for Syngonanthus, but for the whole family, with few differences between genera. Furthermore, the pollen grain of the spiraperturate type and the cystic arrangement of the antipodals in the megagametophyte are peculiar and very distinctive features of Eriocaulaceae within the other Poales (commelinids). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Microsporogenesis, chromosome number, meiotic behaviour and meiotic index were investigated in Dahlstedtia pinnata and D. pentaphylla, two legume species occurring largely in Brazil, in order to ascertain whether the pollen could limit fertilization events. Archesporial cells originate primary sporogenous and anther wall precursor cells, the tapetum is uniseriate, uninucleate and glandular. Tetrads are tetrahedric or decussate, and cytokinesis is of the simultaneous type. Mature pollen grains are tricolpate and bicellular. No abnormalities in microsporogenesis were found. In both species the chromosome number is n = 11, a number not reported previously. The base number for Dahlstedtia is also 11, because cytological observations include both species of Dahlstedtia. D. pentaphylla has a higher meiotic index and lower individual variation values, and it is considered meiotically stable. Its pollen grains do not limit fertilization. D. pinnata has a lower meiotic index, and the pollen is one of the factors which limit fertilization. Furthermore, D. pinnata has numerous adventitious shoots, which suggest that vegetative propagation is important in its reproductive process. (C) 2002 the Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 138, 461-471.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Even the element silicon being the most uptake by rice plant, many benefit effect like: increase of pest and disease tolerance, decrease of lost of water by transpiration and better the leaf architecture becoming the leafs more erect, resulting as well at the better photosynthesis efficacy. There is not too much knowledge about the uptake march in upland rice plants. This study aimed to evaluate the content of silicon in two upland rice cultivars by the influence of the application of silicate and limestone at the soil. The experiment was carried in Hapludox soil in a completely randomized experimental design in 2x2x7 factorial scheme in four replications. The treatments were consisted of calcium silicate fertilizer and limestone in interaction with seven period of physiological stage, using the upland rice cultivars Caiapo and Maravilha. At the cultivar Maravilha Si accumulation begin from tillering and achieve it better value at the microsporogenesis, while the Caiapo cultivar, occurs between tillering until the mily grain. Caiapo shows efficient Si accumulation when it was supplied to the soil. Plant organs that more accumulated silicon in both upland rice cultivars followed decreased order: stem > leaf > panicle.
Desenvolvimento da antera e do grão de pólen em espécies de Mapania Aubl. (Mapanioideae, Cyperaceae)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pollen abortion occurs in virtually all species and often does not prejudice reproductive success. However, large numbers of abnormal pollen grains are characteristic of some groups. Among them is Miconia, in which partial and complete male sterility is often related to apomixis. In this study, we compared the morphology of pollen grains over several developmental stages in Miconia species with different rates of male sterility. Our aim was to improve the knowledge of mechanisms that lead to male sterility in this ecologically important tropical group. Routine techniques for microscopy were used to examine anthers in several developmental stages collected from the apomictic species Miconia albicans and M. stenostachya. Both species are completely male sterile since even the pollen grains with apparently normal cytoplasm were not able to develop a pollen tube. Meiosis is a rare event in M. albicans anthers and happens in an irregular way in M. stenostachya, leading to the pollen abortion. M. albicans has more severe abnormalities than M. stenostachya since even the microspores and pollen grain walls were affected. Moreover, in M. stenostachya, most mitosis occurring during microgametogenesis was also abnormal, leading to the formation of bicellular pollen grains with two similar cells, in addition to the formation of pollen grains of different sizes. Notably, abnormalities in both species did not reach the production of Ubisch bodies, suggesting little or no tapetum involvement in male sterility in these two species.
Resumo:
Genetic segregation experiments with plant species are commonly used for understanding the inheritance of traits. A basic assumption in these experiments is that each gamete developed from megasporogenesis has an equal chance of fusing with a gamete developed from microsporogenesis, and every zygote formed has an equal chance of survival. If gametic and/or zygotic selection occurs whereby certain gametes or zygotic combinations have a reduced chance of survival, progeny distributions are skewed and are said to exhibit segregation distortion. In this study, inheritance data are presented for the trait seed testa color segregating in large populations (more than 200 individuals) derived from closely related mungbean (Vigna radiata L. Wilcek) taxa. Segregation ratios suggested complex inheritance, including dominant and recessive epistasis. However, this genetic model was rejected in favor of a single-gene model based on evidence of segregation distortion provided by molecular marker data. The segregation distortion occurred after each generation of self-pollination from F-1 thru F-7 resulting in F-7 phenotypic frequencies of 151:56 instead of the expected 103.5:103.5. This study highlights the value of molecular markers for understanding the inheritance of a simply inherited trait influenced by segregation distortion.