29 resultados para microsensors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m**-2 d**-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. Flume experiments were conducted in February 2013 at the Institute for Environmental Sciences, University of Koblenz-Landau Landau. Experiments were performed in a closed oval-shaped acrylic glass flume with cross-sectional width of 4 cm and height of 10 cm and total length of 54 cm. The fluid flow was induced by a propeller driven by a motor and mean flow velocities of up to 20 cm s-1 were generated by applying voltages between 0 V and 4 V DC. The flume was completely sealed with an acrylic glass cover. Oxygen sensors were inserted through rubber seal fittings and allowed positioning the sensors with inclinations to the main flow direction of ~60°, ~95° and ~135°. A Clark type electrochemical O2 microsensor with a low stirring sensitivity (0.7%) was tested and a fast-responding needle-type O2 optode (PyroScience GmbH, Germany) was used as reference as optodes should not be stirring sensitive. Instantaneous three-dimensional flow velocities were measured at 7.4 Hz using stereoscopic particle image velocimetry (PIV). The velocity at the sensor tip was extracted. The correlation of the fluctuating O2 sensor signals and the fluctuating velocities was quantified with a cross-correlation analysis. A significant cross-correlation is equivalent to a significant artificial flux. For a total of 18 experiments the flow velocity was adjusted between 1.7 and 19.2 cm s**-1, and 3 different orientations of the electrochemical sensor were tested with inclination angles of ~60°, ~95° and ~135° with respect to the main flow direction. In experiments 16-18, wavelike flow was induced, whereas in all other experiments the motor was driven by constant voltages. In 7 experiments, O2 was additionally measured by optodes. Although performed simultaneously with the electrochemical sensor, optode measurements are listed as separate experiments (denoted by the attached 'op' in the filename), because the velocity time series was extracted at the optode tip, located at a different position in the flume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME-pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3- ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification of two important calcifying reef algae (Halimeda macroloba and Halimeda cylindracea) were investigated with O2 microsensors and chlorophyll a fluorometry through a combination of two pCO2 (400 and 1,200 µatm) and two temperature treatments (28 and 32 °C) equivalent to the present and predicted conditions during the 2100 austral summer. Combined exposure to pCO2 and elevated temperature impaired calcification and photosynthesis in the two Halimeda species due to changes in the microenvironment around the algal segments and a reduction in physiological performance. There were no significant changes in controls over the 5-week experiment, but there was a 50-70 % decrease in photochemical efficiency (maximum quantum yield), a 70-80 % decrease in O2 production and a threefold reduction in calcification rate in the elevated CO2 and high temperature treatment. Calcification in these species is closely coupled with photosynthesis, such that a decrease in photosynthetic efficiency leads to a decrease in calcification. Although pH seems to be the main factor affecting Halimeda species, heat stress also has an impact on their photosystem II photochemical efficiency. There was a strong combined effect of elevated CO2 and temperature in both species, where exposure to elevated CO2 or temperature alone decreased photosynthesis and calcification, but exposure to both elevated CO2 and temperature caused a greater decline in photosynthesis and calcification than in each stress individually. Our study shows that ocean acidification and ocean warming are drivers of calcification and photosynthesis inhibition in Halimeda. Predicted climate change scenarios for 2100 would therefore severely affect the fitness of Halimeda, which can result in a strongly reduced production of carbonate sediments on coral reefs under such changed climate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O trabalho descrito nesta tese mostra de forma detalhada a fabricação e caracterização de diferentes microssensores eletroquímicos os quais têm sido recentemente utilizados como sondas em grupo de técnicas conhecida como Scanning Electrochemical Probe Microscopy (SEPM). Desta forma, a caracterização de superfícies pode ser feita explorando diferentes fenômenos interfaciais relevantes à Ciência. Neste sentido, as interfaces de materiais cristalinos como hidroxiapatita (materiais dentários) e calcita foram o foco de estudo neste trabalho. Assim, diferentes técnicas SEPM foram exploradas no sentido de se obter informações relevantes relacionadas aos processos dentários, como a erosão ácida e hipersensibilidade. Inicialmente, microeletrodos de platina foram desenvolvidos empregando uma metodologia convencional na qual são utilizados microfibras encapsuladas em capilares de vidro. Scanning Electrochemical Microscopy (SECM) no modo amperométrico foi utilizada para obtenção de informações com relação às alterações de topografia do esmalte dentário causadas pelo contato com substâncias ácidas. Adicionalmente, SECM foi empregada no estudo do transporte de espécies eletroativas em amostras de dentina e investigações relacionadas ao bloqueio dos túbulos empregando-se cremes dentais comerciais foram realizadas. A permeação de peróxido de hidrogênio pela dentina também foi estudada. Os resultados de SECM foram comparados com imagens SEM obtidas nas mesmas condições experimentais. Microeletrodos de membrana ionófora íon-seletiva (Ion Selective Microelectrodes-ISMEs) sensíveis a íons cálcio também foram desenvolvidos e caracterizados, com subsequente aplicação em SECM no modo potenciométrico. A dissolução ácida de esmalte bovino (erosão dentária) foi investigada em diferentes valores de pH (2,5; 4,5; 6,8). Além disso, o transporte de íons cálcio através de membranas porosas sintéticas foi avaliado a uma distância tip/substrato de 300µm. Alterações no fluxo de íons cálcio foram correlacionadas em experimentos realizados na presença e ausência de campos magnéticos gerados por nanopartículas de magnetita incorporadas à membrana porosa. Microcristais de calcita facilmente sintetizados pelo método de precipitação foram utilizados como superfície modelo para investigações interfaciais, cujos resultados podem ser correlacionados aos materiais dentários. Desta forma, nanopipetas de vidro preenchidas com eletrólito suporte foram fabricadas e utilizadas como sonda em Scanning Ion Conductance Microscopy (SICM). O mapeamento topográfico de alta resolução espacial da superfície de um microcristal de calcita foi obtido utilizando o modo de varredura hopping mode. Adicionalmente, sondas multifuncionais ISME-SICM também foram desenvolvidas e caracterizadas para investigações simultâneas com relação às alterações topográficas e quantificação de íons cálcio sobre a superfície de um microcristal de calcita. A adição de reagentes ácidos no canal SICM promoveu a dissolução da superfície do microcristal, sendo obtidos dados cinéticos de dissolução. Investigações em meio neutro também foram realizadas utilizando a sonda ISME-SICM. Os resultados experimentais obtidos também foram comparados com aqueles oriundos de simulação computacional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed size-specific dry mass, sinking velocity, and apparent diffusivity in field-sampled marine snow, laboratory-made aggregates formed by diatoms or coccolithophorids, and small and large zooplankton fecal pellets with naturally varying content of ballast materials. Apparent diffusivity was measured directly inside aggregates and large (millimeter-long) fecal pellets using microsensors. Large fecal pellets, collected in the coastal upwelling off Cape Blanc, Mauritania, showed the highest volume-specific dry mass and sinking velocities because of a high content of opal, carbonate, and lithogenic material (mostly Saharan dust), which together comprised ~80% of the dry mass. The average solid matter density within these large fecal pellets was 1.7 g cm**-3, whereas their excess density was 0.25 ± 0.07 g cm**-3. Volume-specific dry mass of all sources of aggregates and fecal pellets ranged from 3.8 to 960 µg mm**-3, and average sinking velocities varied between 51 and 732 m d**-1. Porosity was >0.43 and >0.96 within fecal pellets and phytoplankton-derived aggregates, respectively. Averaged values of apparent diffusivity of gases within large fecal pellets and aggregates were 0.74 and 0.95 times that of the free diffusion coefficient in sea water, respectively. Ballast increases sinking velocity and, thus, also potential O2 fluxes to sedimenting aggregates and fecal pellets. Hence, ballast minerals limit the residence time of aggregates in the water column by increasing sinking velocity, but apparent diffusivity and potential oxygen supply within aggregates are high, whereby a large fraction of labile organic carbon can be respired during sedimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial arrangement and metabolic activity of 'Candidatus Competibacter phosphatis' was investigated in granular sludge from an anaerobic-aerobic sequencing batch reactor enriched for glycogen-accumulating organisms. In this process, the electron donor (acetate) and the electron acceptor (oxygen) were supplied sequentially in each phase. The organism, identified by fluorescence in situ hybridisation, was present throughout the granules; however, metabolic activity was limited to a 100-mum-thick layer immediately below the surface of the granules. To investigate the cause of this, oxygen microsensors and a novel microscale biosensor for volatile fatty acids were used in conjunction with chemical staining for intracellular storage polymers. It was found that the limited distribution of activity was caused by mass transport limitation of oxygen into the granules during the aerobic phase. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and micro-sensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22 - 80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations ( approximate to 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be > 20mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. (C) 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen consumption rates (OCR), aerobic mineralization and sulfate reduction rates (SRR) were studied in the permeable carbonate reef sediments of Heron Reef, Australia. We selected 4 stations with different hydrodynamic regimes for this study. In situ oxygen penetration into the sediments was measured with an autonomous microsensor profiler. Areal OCR were quantified from the measured oxygen penetration depth and volumetric OCR. Oxygen penetration and dynamics (median penetration depths at the 4 stations ranged between 0.3 and 2.2 cm), OCR (median 57 to 196 mmol C m(-2) d(-1)), aerobic mineralization (median 24 to 176 mmol C m(-2) d(-1)) and SRR (median 9 to 42 mmol C m(-2) d(-1)) were highly variable between sites. The supply of oxygen by pore water advection was a major cause for high mineralization rates by stimulating aerobic mineralization at all sites. However, estimated bottom water filtration rates could not explain the differences in volumetric OCR and SRR between the 4 stations. This suggests that local mineralization rates are additionally controlled by factors other than current driven pore water advection, e.g. by the distribution of the benthic fauna or by local differences in labile organic carbon supply from sources such as benthic photosynthesis. Carbon mineralization rates were among the highest reported for coral reef sediments, stressing the role of these sediments in the functioning of the reef ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiration and ammonium excretion rates at different oxygen partial pressure were measured for calanoid copepods and euphausiids from the Eastern Tropical South Pacific and the Eastern Tropical North Atlantic. All specimens used for experiments were caught in the upper 400 m of the water column and only animals appearing unharmed and fit were used for experiments. Specimens were sorted, identified and transferred into aquaria with filtered, well-oxygenated seawater immediately after the catch and maintained for 1 to 13 hours prior to physiological experiments at the respective experimental temperature. Maintenance and physiological experiments were conducted in darkness in temperature-controlled incubators at 11, 13 or 23 degree C (±1). Before and during experiments, animals were not fed. Respiration and ammonium excretion rate measurements (both in µmol h-1 gDW-1) at varying oxygen concentrations were conducted in 12 to 60 mL gas-tight glass bottles. These were equipped with oxygen microsensors (ø 3 mm, PreSens Precision Sensing GmbH, Regensburg, Germany) attached to the inner wall of the bottles to monitor oxygen concentrations non-invasively. Read-out of oxygen concentrations was conducted using multi-channel fiber optic oxygen transmitters (Oxy-4 and Oxy-10 mini, PreSens Precision Sensing GmbH, Regensburg, Germany) that were connected via optical fibers to the outside of the bottles directly above the oxygen microsensor spots. Measurements were started at pre-adjusted oxygen and carbon dioxide levels. For this, seawater stocks with adjusted pO2 and pCO2 were prepared by equilibrating 3 to 4 L of filtered (0.2 µm filter Whatman GFF filter) and UV - sterilized (Aqua Cristal UV C 5 Watt, JBL GmbH & Co. KG, Neuhofen, Germany) water with premixed gases (certified gas mixtures from Air Liquide) for 4 hours at the respective experimental temperature. pCO2 levels were chosen to mimic the environmental pCO2 in the ETSP OMZ or the ETNA OMZ. Experimental runs were conducted with 11 to 15 trial incubations (1 or 2 animals per incubation bottle and three different treatment levels) and three animal-free control incubations (one per experimental treatment). During each run, experimental treatments comprised 100% air saturation as well as one reduced air saturation level with and without CO2. Oxygen concentrations in the incubation bottles were recorded every 5 min using the fiber-optic microsensor system and data recording for respiration rate determination was started immediately after all animals were transferred. Respiration rates were calculated from the slope of oxygen decrease over selected time intervals. Chosen time intervals were 20 to 105 min long. No respiration rate was calculated for the first 20 to 60 min after animal transfer to avoid the impact of enhanced activity of the animal or changes in the bottle water temperature during initial handling on the respiration rates and oxygen readings. Respiration rates were obtained over a maximum of 16 hours incubation time and slopes were linear at normoxia to mild hypoxia. Respiration rates in animal-free control bottles were used to correct for microbial activity. These rates were < 2% of animal respiration rates at normoxia. Samples for the measurement of ammonium concentrations were taken after 2 to 10 hours incubation time. Ammonium concentration was determined fluorimetrically (Holmes et al., 1999). Ammonium excretion was calculated as the concentration difference between incubation and animal-free control bottles. Some specimens died during the respiration and excretion rate measurements, as indicated by a cessation of respiration. No excretion rate measurements were conducted in this case, but the oxygen level at which the animal died was noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A crescente urbanização global tem como consequência o aumento dos níveis de poluentes na atmosfera e a respetiva deterioração da qualidade do ar. O controlo da poluição atmosférica e monitorização da qualidade do ar são passos fundamentais para implementar estratégias de redução e estimular a consciência ambiental dos cidadãos. Com este intuito, existem várias técnicas e tecnologias que podem ser usadas para monitorizar a qualidade do ar. A utilização de microsensores surge como uma ferramenta inovadora para a monitorização da qualidade do ar. E, apesar dos desempenhos dos microsensores permitirem uma nova estratégia, resultando em respostas rápidas, baixos custos operacionais e eficiências elevadas, que não podem ser alcançados apenas com abordagens convencionais, ainda é necessário aprofundar o conhecimento a fim de integrar estas novas tecnologias, particularmente quanto à verificação do desempenho dos sensores comparativamente aos métodos de referência em campanhas experimentais. Esta dissertação, desenvolvida no Instituto do Ambidente e Desenvolvimento em forma de estágio, teve como objetivo a avaliação do desempenho de sensores de baixo custo comparativamente com os métodos de referência, tendo como base uma campanha de monitorização da qualidade do ar realizada no centro de Aveiro durante 2 semanas de outubro de 2014. De forma mais específica pretende-se perceber até que ponto se podem utilizar sensores de baixo custo que cumpram os requisitos especificados na legislação e as especificidades das normas, estabelecendo assim um protocolo de avaliação de microsensores. O trabalho realizado passou ainda pela caracterização da qualidade do ar no centro de Aveiro para o período da campanha de monitorização. A aplicação de microsensores eletroquímicos, MOS e OPC em paralelo com equipamento de referência neste estudo de campo permitiu avaliar a fiabilidade e a incerteza destas novas tecnologias de monitorização. Com este trabalho verificou-se que os microsensores eletroquímicos são mais precisos comparativamente aos microsensores baseados em óxidos metálicos, apresentando correlações fortes com os métodos de referência para diversos poluentes. Por sua vez, os resultados obtidos pelos contadores óticos de partículas foram satisfatórios, contudo poderiam ser melhorados quer pelo modo de amostragem, quer pelo método de tratamento de dados aplicado. Idealmente, os microsensores deveriam apresentar fortes correlações com o método de referência e elevada eficiência de recolha de dados. No entanto, foram identificados alguns problemas na eficiência de recolha de dados dos sensores que podem estar relacionados com a humidade relativa e temperaturas elevadas durante a campanha, falhas de comunicação intermitentes e, também, a instabilidade e reatividade causada por gases interferentes. Quando as limitações das tecnologias de sensores forem superadas e os procedimentos adequados de garantia e controlo de qualidade possam ser cumpridos, os sensores de baixo custo têm um grande potencial para permitir a monitorização da qualidade do ar com uma elevada cobertura espacial, sendo principalmente benéfico em áreas urbanas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A crescente urbanização global tem como consequência o aumento dos níveis de poluentes na atmosfera e a respetiva deterioração da qualidade do ar. O controlo da poluição atmosférica e monitorização da qualidade do ar são passos fundamentais para implementar estratégias de redução e estimular a consciência ambiental dos cidadãos. Com este intuito, existem várias técnicas e tecnologias que podem ser usadas para monitorizar a qualidade do ar. A utilização de microsensores surge como uma ferramenta inovadora para a monitorização da qualidade do ar. E, apesar dos desempenhos dos microsensores permitirem uma nova estratégia, resultando em respostas rápidas, baixos custos operacionais e eficiências elevadas, que não podem ser alcançados apenas com abordagens convencionais, ainda é necessário aprofundar o conhecimento a fim de integrar estas novas tecnologias, particularmente quanto à verificação do desempenho dos sensores comparativamente aos métodos de referência em campanhas experimentais. Esta dissertação, desenvolvida no Instituto do Ambidente e Desenvolvimento em forma de estágio, teve como objetivo a avaliação do desempenho de sensores de baixo custo comparativamente com os métodos de referência, tendo como base uma campanha de monitorização da qualidade do ar realizada no centro de Aveiro durante 2 semanas de outubro de 2014. De forma mais específica pretende-se perceber até que ponto se podem utilizar sensores de baixo custo que cumpram os requisitos especificados na legislação e as especificidades das normas, estabelecendo assim um protocolo de avaliação de microsensores. O trabalho realizado passou ainda pela caracterização da qualidade do ar no centro de Aveiro para o período da campanha de monitorização. A aplicação de microsensores eletroquímicos, MOS e OPC em paralelo com equipamento de referência neste estudo de campo permitiu avaliar a fiabilidade e a incerteza destas novas tecnologias de monitorização. Com este trabalho verificou-se que os microsensores eletroquímicos são mais precisos comparativamente aos microsensores baseados em óxidos metálicos, apresentando correlações fortes com os métodos de referência para diversos poluentes. Por sua vez, os resultados obtidos pelos contadores óticos de partículas foram satisfatórios, contudo poderiam ser melhorados quer pelo modo de amostragem, quer pelo método de tratamento de dados aplicado. Idealmente, os microsensores deveriam apresentar fortes correlações com o método de referência e elevada eficiência de recolha de dados. No entanto, foram identificados alguns problemas na eficiência de recolha de dados dos sensores que podem estar relacionados com a humidade relativa e temperaturas elevadas durante a campanha, falhas de comunicação intermitentes e, também, a instabilidade e reatividade causada por gases interferentes. Quando as limitações das tecnologias de sensores forem superadas e os procedimentos adequados de garantia e controlo de qualidade possam ser cumpridos, os sensores de baixo custo têm um grande potencial para permitir a monitorização da qualidade do ar com uma elevada cobertura espacial, sendo principalmente benéfico em áreas urbanas.