998 resultados para microhardness analysis
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This research project focused primarily on assessing the impact toughness of the weld and the base material of a steel pipe API 5L X70 submerged arc welded, used to conduct remote oil and gas (linepipes). The analysis followed strictly the Specification for Line Pipe - API 5L Standard, regarding the removal of the specimens of regions-of-proof-long section of the pipe, at 90o and 180o from the welded joint, and mechanical properties of toughness and Charpy-V, both the joint welded as the base material. Specimens of steel tube supplied by Tenaris Confab-SA were sized for tensile and Charpy-V, according to ASTM E 8M and ASTM E23, respectively. The result obtained showed that the API X70 steel tube has high Charpy-V toughness, near to each other at both 90o and 180o from the welded joint of the tube, and both higher than the weld metal. Microstructural and microhardness analysis complemented the present study
Resumo:
The acquired enamel pellicle that forms on the tooth surface serves as a natural protective barrier against dental erosion. Numerous proteins composing the pellicle serve different functions within this thin layer. Our study examined the effect of incorporated mucin and casein on the erosion-inhibiting potential of the acquired enamel pellicle. Cyclic acidic conditions were applied to mimic the erosive environment present at the human enamel interface during the consumption of soft drinks. One hundred enamel specimens were prepared for microhardness tests and distributed randomly into 5 groups (n = 20) that received the following treatment: deionized water, humidity chamber, mucin, casein, or a combination of mucin and casein. Each group was exposed to 3 cycles of a 2-hour incubation in human saliva, followed by a 2-hour treatment in the testing solution and a 1-min exposure to citric acid. The microhardness analysis demonstrated that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. The addition of individual proteins did not statistically impact the function of the pellicle. These data suggest that protein-protein interactions may play an important role in the effectiveness of the pellicle to prevent erosion.
Resumo:
This study aimed to evaluate the effectiveness of fluorescence-based methods (DIAGNOdent, LF; DIAGNOdent pen, LFpen, and VistaProof fluorescence camera, FC) in detecting demineralization and remineralization on smooth surfaces in situ. Ten volunteers wore acrylic palatal appliances, each containing 6 enamel blocks that were demineralized for 14 days by exposure to a 20% sucrose solution and 3 of them were remineralized for 7 days with fluoride dentifrice. Sixty enamel blocks were evaluated at baseline, after demineralization and 30 blocks after remineralization by two examiners using LF, LFpen and FC. They were submitted to surface microhardness (SMH) and cross-sectional microhardness analysis. The integrated loss of surface hardness (ΔKHN) was calculated. The intraclass correlation coefficient for interexaminer reproducibility ranged from 0.21 (FC) to 0.86 (LFpen). SMH, LF and LFpen values presented significant differences among the three phases. However, FC fluorescence values showed no significant differences between the demineralization and remineralization phases. Fluorescence values for baseline, demineralized and remineralized enamel were, respectively, 5.4 ± 1.0, 9.2 ± 2.2 and 7.0 ± 1.5 for LF; 10.5 ± 2.0, 15.0 ± 3.2 and 12.5 ± 2.9 for LFpen, and 1.0 ± 0.0, 1.0 ± 0.1 and 1.0 ± 0.1 for FC. SMH and ΔKHN showed significant differences between demineralization and remineralization phases. There was a negative and significant correlation between SMH and LF and LFpen in the remineralization phase. In conclusion, LF and LFpen devices were effective in detecting demineralization and remineralization on smooth surfaces provoked in situ.
Resumo:
This study evaluated the superficial microhardness of enamel in teeth at different posteruptive ages (before eruption in the oral cavity, 2-3 years after eruption, 4-10 years after eruption and more than 10 years after eruption). The study sample was composed of 134 specimens of human enamel. One fragment of each tooth was obtained from the flattest central portion of the crown to produce specimens with 3 x 3 mm. The enamel blocks were minimally flattened out and polished in order to obtain a flat surface parallel to the base, which is fundamental for microhardness testing. Microhardness was measured with a microhardness tester and a Knoop diamond indenter, under a static load of 25 g applied for 5 seconds. Comparison between the superficial microhardness obtained for the different groups was performed by analysis of Student's t test. The results demonstrated that superficial microhardness values have a tendency to increase over the years, with statistically significant difference only between unerupted enamel and that with more than 10 years after eruption. According to the present conditions and methodology, it was concluded that there were differences between the superficial micro-hardness of specimens at different eruptive ages, revealing an increasing mineralization. However, this difference was significant only between unerupted specimens and those with more than 10 years after eruption.
Resumo:
The aim of this study was to evaluate the degree of conversion by Knoop microhardness (KHN) and FT-Raman spectroscopy (FTIR) of one nanofilled (Filtek Supreme-3M-ESPE [FS]) and one microhybrid composite (Charisma-Heraeus-Kulzer [CH]), each with different opacities, namely enamel, dentin, and translucent, which were photo-activated by a quartz-tungsten-halogen lamp (QTH) and a light-emitting diode (LED). Resin was bulk inserted into a disc-shaped mold that was 2.0 mm thick and 4 mm in diameter, obtaining 10 samples per group. KHN and FTIR values were analyzed by two-way ANOVA and Tukey's tests (α = 0.05). Nanofilled resin activated by a LED presented higher microhardness values than samples activated by a QTH for dentin opacity (p < 0.05). The microhybrid resin showed no differences in KHN or FTIR values with different activation sources or opacity. The nanofilled dentin and enamel resins showed lower FTIR values than the translucent resin. The KHN values of the translucent resins were not influenced by the light source.
Resumo:
The purpose of this paper was to study the main effects of the turning in the superficial integrity of the duplex stainless steel ASTM A890-6A. The tests were conducted on a turning centre with carbide tools and the main entrances variables were: tool material class, feed rate, cutting depth, cutting speed and cutting fluid utilisation. The answers were analysed: microstructural analysis by optical microscopy and x-ray diffraction, cutting forces measurements by a piezoelectric dynamometer, surface roughness, residual stress by x-ray diffraction technique and the microhardness measurements. The results do not show any changes in the microstructural of the material, even when the greater cutting parameters were used. The smaller feed rate (0.1 mm/v), smaller cutting speed (110 m/min) and the greater cutting depth (0.5 mm) provided the smaller values for the tensile residual stress, the smaller surface roughness and the greater microhardness.
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Effect of erbium:yttrium-aluminum-garnet laser energies on superficial and deep dentin microhardness
Resumo:
This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium-aluminum-garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 A mu m, 40 A mu m, 60 A mu m, 80 A mu m, 100 A mu m, and 200 A mu m) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher`s tests (alpha = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 A mu m with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.
Resumo:
Introduction: The greatest reduction in microhardness of the most superficial layer of dentin of the root canal lumen is desired. The use of chelating agents during biomechanical preparation of root canals removes smear layer, increasing the access of the irrigant into the dentin tubules to allow adequate disinfection, and also reduces dentin microhardness, facilitating the action of endodontic instruments. This study evaluated the effect of different chelating solutions on the microhardness of the most superficial dentin layer from the root canal lumen. Methods: Thirty-five recently extracted single-rooted maxillary central incisors were instrumented, and the roots were longitudinally sectioned in a mesiodistal direction to expose the entire canal extension. The specimens were distributed in seven groups according to the final irrigation: 15% EDTA, 10% citric acid, 5% malic acid, 5% acetic acid, apple vinegar, 10% sodium citrate, and control (no irrigation). A standardized volume of 50 mu L of each chelating solution was used for 5 minutes. Dentin microhardness was measured with a Knoop indenter under a 10-g load and a 15-second dwell time. Data were analyzed statistically by one-way analysis of variance and Tukey-Kramer multiple-comparison test at 5% significance level. Results: EDTA and citric acid had the greatest overall effect, causing a sharp decrease in dentin microhardness without a significant difference (p > .05) from each other. However, both chelators differed significantly from the other solutions (p < .001). Sodium citrate and deionized water were similar to each other (p > .05) and did not affect dentin microhardness. Apple vinegar, acetic acid, and malic acid were similar to each other (p > .05) and presented intermediate results. Conclusion: Except for sodium citrate, all tested chelating solutions reduced microhardness of the most superficial root canal dentin layer. EDTA and citric acid were the most efficient. (J Endod 2011;37:358-362)
Resumo:
The quality of machined components is currently of high interest, for the market demands mechanical components of increasingly high performance, not only from the standpoint of functionality but also from that of safety. Components produced through operations involving the removal of material display surface irregularities resulting not only from the action of the tool itself, but also from other factors that contribute to their superficial texture. This texture can exert a decisive influence on the application and performance of the machined component. This article analyzes the behavior of the minimum quantity lubricant (MQL) technique and compares it with the conventional cooling method. To this end, an optimized fluid application method was devised using a specially designed nozzle, by the authors, through which a minimum amount of oil is sprayed in a compressed air flow, thus meeting environmental requirements. This paper, therefore, explores and discusses the concept of the MQL in the grinding process. The performance of the MQL technique in the grinding process was evaluated based on an analysis of the surface integrity (roughness, residual stress, microstructure and microhardness). The results presented here are expected to lead to technological and ecological gains in the grinding process using MQL. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)