231 resultados para microhabitat
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The establishment of plants depends crucially on where seeds are deposited in the environment. Some authors suggest that in forest understory seed predation is lower than in gaps, and higher than at the forest edge. However, most studies have been carried out in large forest patches and very little is known about the effects of microhabitat conditions on seed predation in forest fragments. We evaluated the effects of three microhabitats (gaps, forest edge, and understory) on seed predation of two palm species (Euterpe edulis and Syagrus romanzoffiana) in two semi-deciduous forest fragments (230 and 2100 hat in southeast Brazil. Our objective was to test two hypotheses: (1) Low rodent abundance in small fragments as a result of meso-predator action levels leads to lower seed predation in small fragments. (2) Most mammal species in small fragments are generalists with respect to diet and habitat, so that seed predation is similar in different microhabitats (gaps, forest edge and understory) in the small fragment, but not in the larger one. The study community of small fragments is usually composed of generalist species (in diet and habitat aspects), so we expected the same rate of seed predation among microhabitats (gaps, forest edge and understory) in the tested smaller fragment. The experiment was carried out in the dry season (for E. edulis) and in the wet season (for S. romanzoffiana) in 1999. We conclude that post-dispersal seed predation in forest fragments can be directly connected with mammal communities, reflecting their historical and ecological aspects. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
Microhabitat distribution was investigated in five populations of Characeae (two of Chara guairensis, two of Nitella subglomerata and one of Nitella sp.) to determine the distributional patterns, the morphometric and reproductive adaptations to varying environmental conditions and niche width on a scale of few centimeters. Variations in physical variables revealed some general trends of microhabitat distribution for the Characeae populations studied, with occurrence under the following conditions: slow and narrow current velocities; substrata predominantly composed of small particle size (sand-clay); variable and generally low depths. In terms of morphological adaptations, we found some general patterns: plants with longer whorl branchlets also had longer internodes in all populations studied, whereas longer plants had also thicker axis. The former were generally associated with higher biomass (percent cover). Few correlations of morphological characters were observed with environmental variables (e.g. plant length with irradiance: negative in two populations and positive in one population). Despite the general patterns of occurrence mentioned above, our results also indicated that each population differed in its responses to environmental variables and had particular morphological and reproductive adaptations. The Characean populations occurred under a narrower range of microhabitat conditions than other macroalgae from lotic habitats, particularly lower current velocity (6.7-9.8 cm s(-1)) and a more specific substratum type (sand-clay). Niche width values (0.60-0.99) of the Characeae populations studied indicate a high degree of habitat specialization and are among the highest yet found in lotic macroalgae. The relatively narrow variations in microhabitat conditions and high niche widths here reported for Characean populations, suggest a lower tolerance to variations in current velocity, depth, irradiance and substratum type. These characteristics probably explain the relatively restricted distribution of Characeae species in streams of S (a) over tildeo Paulo State with low frequency of records in most regions.
Resumo:
Microhabitat distribution was investigated in three populations of C. coeruleus to determine the distributional patterns and their controlling factors, as well as morphometric adaptations to varying conditions on a scale of a few centimetres. Morphometric variations and their relations with physical variables (current velocity, irradiance, depth and type of substratum) revealed some particular characteristics for each population and indicate particular adaptations. However, some trends were clear: 1) larger plants (length and/or diameter) produced a higher quantity of monosporangia in the three populations; 2) plant length and diameter were positively correlated in two populations; 3) plant diameter was positively correlated with current velocity in two populations; 4) higher percent cover was associated with substrata composed of macrophytes in two populations. C. coeruleus occurred under relatively wide microhabitat conditions and had high niche width values, suggesting a tolerance to considerable variation in physical variables. These characteristics contribute to the species' wide distribution in Brazilian streams, both spatial (at distinct scales) and seasonal. (C) ADAC / Elsevier, Paris.
Resumo:
Microhabitat and plant structure of seven Batrachospermum populations (four of Batrachospermum delicatulum (= Sirodotia delicatula), one of Batrachospermum macrosporum and two of the 'Chantransia' stage), including the influence of physical variables (current velocity, depth, irradiance and substratum), were investigated in four streams of São Paulo State, southeastern Brazil. The populations of B. delicatulum and the 'Chantransia' stage occurred under very diverse microhabitat conditions, which probably contributes to their wide spatial and seasonal distribution in Brazilian streams. Results suggest branch reconfiguration as a probable mechanism of adaptation to current velocity based on the occurrence of: (i) B. macrosporum (a large mucilaginous form with presumably little ability for branch reconfiguration) under lower current velocity than B. delicatulum; (ii) only dense plants in populations with high current velocities (> 60 cm s-1), whereas 53-77% of dense plants were seen in populations exposed to lower currents (< 40 cm s-1); (iii) positive correlations of plant length with internode length in populations under low current velocities and negative correlation in a population with high velocity (132 cm s-1); and (iv) negative correlations of current velocity with plant diameter and internode length in a population under high flow. This study, involving mainly dioecious populations, revealed that B. delicatulum displayed higher fertilization rates than B. macrosporum. A complementary explanation for a dioecious species to increase fertilization success was proposed consisting of outcrossing among intermingled male and female adjacent plants within an algal spot.
Resumo:
Two populations of Chaetophora elegans (Roth) C. Agardh and two of Stigeoclonium helveticum Vischer were investigated for microhabitat characteristics and morphological variation in streams of Sao Paulo State, southeastern Brazil. Different patterns of microhabitat distribution were found between species investigated. Populations of C. elegans were distributed under relatively narrow microhabitat conditions (high irradiance, low depth, moderate to high current velocity, rocky substrata and lower values of niche width) and showing little morphometric variation (colony diameter, main axis cell size, and apical branch number). Stigeoclonium helveticum occurred under more diverse microhabitat conditions, revealed by lack of significant difference between sampling units with and without the alga and wider niche width, but also exhibited relatively narrow morphometric variation (plant length, main axis cell and lateral branch cell sizes). The narrow microhabitat conditions and smaller niche width of C. elegans can explain its low abundance (percentage cover) in streams from the area studied as well as in other regions of Sao Paulo State. In contrast, the wider variation of microhabitat conditions and the higher niche widths of S. helveticum suggest that this green alga is able to grow in a high number of stream ecosystems in the region investigated, ranging from undisturbed to highly disturbed habitats. Thus, the results suggest that S. helveticum is a generalist species.
Resumo:
This study aimed to evaluate some microhabitat characteristics of two populations of Tolypothrix distorta in streams from midsouthern region of Paraná State on a seasonal period. Each population was monthly investigated for the abundance of T. distorta and environmental variables such as depth, current velocity, irradiance, richness, and substrate diversity (H') using the quadrat technique for each sample unit (n = 7-10). For each segment the following physical and chemical water variables were also measured: temperature, oxygen saturation, specific conductance, pH, and turbidity. The seasonal period of higher abundance (percent cover) occurred during the months corresponding to summer/fall for both populations. The analyses also showed that populations had lower niche width and wide variation under the environmental conditions, characterizing the species as a generalist in the use of resources. Faster water flow and larger substrates favored the development of T. distorta, which may be related to the species morphological characteristics, thallus type that consists of tangled filaments formed by tuft and covered with thick gelatinous coats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Não disponível
Resumo:
Reflecting their exceptional radiation, snakes occur in different habitats and microhabitats and are able to eat numerous types of prey. The availability of good and comprehensive phylogenies for different snake’s lineages together with natural history data provides an opportunity to explore how ecological traits diversified during their radiation. In the present study, we describe the diet and microhabitat variation (arboreal or non-arboreal) in the tribe Pseudoboini and explore how these traits evolved during the tribe’s diversification. We analyzed specimens deposited in scientific collections and gathered information on diet and microhabitat use available in the literature and provided by other researchers. We also mapped diet and microhabitat data onto a phylogeny of the tribe using the principle of parsimony. Pseudoboine snakes feed mainly on lizards and small mammals, and of the 22 species for which a minimum number of prey records was obtained, nine are diet generalists, six are lizard specialists, three are small mammal specialists, two are snake specialists, one is a lizard egg specialist, and one is a bird egg specialist. The highly diverse feeding habits of pseudoboines seem to have evolved mainly in the terminal taxa. Among those species that had enough microhabitat data (17 species), Drepanoides anomalus, Siphlophis cervinus, S. compressus, and S. pulcher frequently use the vegetation. Our results indicate that an increase in arboreality evolved several times during the diversification of the tribe, and that the Siphlophis clade seems to have maintained the high degree of arboreality from its ancestor. Species that frequently use vegetation are either lizard or lizard egg specialists, indicating that these habits might be associated in the evolution of pseudoboines.
Resumo:
The deployment of flat concrete blocks on subtidal rocky reefs can replicate natural reef microhabitats and provides a means for standardized sampling of cryptic invertebrates. The shape of the cavity beneath the block is related to reef topography and may influence the invertebrate community by affecting the amount of space for cryptic fauna to colonise and influencing the effectiveness of their predator-defence mechanisms. To determine the effect of sub-block reef structure and different levels of external predators on cryptic molluscs and echinoderms, I deployed concrete blocks at locations inside and outside the Maria Island marine reserve in eastern Tasmania, Australia. Relationships between sub-block reef structure and the cryptic invertebrate assemblage were evident between locations, whereas only a small but significant proportion of variation of assemblages between blocks within location was explained by reef surface area. No clear association with external predation pressure was evident in multivariate analyses of variation in assemblage structure. Juvenile abalone Haliotis rubra were not influenced by micro-habitat structure but were significantly less abundant at protected locations, the only species to exhibit such a response. This result follows a decline of emergent adult abalone in the marine reserve and raises the possibility of recruitment failure of abalone at some fully protected locations in the longer term.
Resumo:
The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.