876 resultados para microfluidic device


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogels are composed of cross-linked networks of hydrophilic polymers that are biocompatible due to their high water content. Mass transfer through hydrogels has been suggested as an effective method of drug delivery, specifically in degradable polymers to minimize lasting effects within the body. Diffusion of small molecules in poly (ethylene glycol) diacrylate (PEG-DA) and dextran methacrylate (dex-MA) hydrogels was characterized in a microfluidic device and by complementary techniques. Microfluidic devices were prepared by crosslinking a formulation of hydrogel and photo-initiator, with and without visible dye, using photolithography to define a central microchannel. Channel sizes within the devices were approximately 600 ¿m to simulate vessels within the body. The microfluidic technique allows for both image and effluent analyses. To visualize the diffusive behavior within the dextran hydrogel, methylene blue and sulforhodamine 101 dyes were used in both elution and uptake experiments. Three analysis techniques for measuring diffusion coefficients were used to quantify the diffusion of solute in the hydrogel, including optical microscopy, characterization of device effluent, and NMR analyses. The optical microscopy technique analyzes images of the dye diffusion captured by a stereomicroscope to generate dye concentration v. position profiles. The data was fit to a diffusion model to determine diffusion coefficients and the dye release profile. In a typical elution experiment, aqueous solution is pumped through the microchannel and dye diffuses out of the hydrogel and into the aqueous phase. During elution, images are taken at regular time intervals and the effluent was collected. Analysis of the device effluent was performed using ultraviolet-visible (UV/Vis) spectroscopy to determine the effluent dye concentration and thus a short-time diffusion coefficient. Nuclear magnetic resonance (NMR) was used to determine a free diffusion coefficient of molecules in hydrogel without the effect of a concentration gradient. Diffusion coefficients for methylene blue and sulforhodamine 101 dyes in dex-MA hydrogel calculated using the three analysis methods all agree well. It was determined that utilizing a combination of the three techniques offers greater insight into molecular diffusion in hydrogels than employing each technique individually. The use of the same microfluidic devices used to measure diffusion is explored in the use of studying the degradation of dex-MA hydrogels. By combining what is known about the degradation rate in regards to the effect of pH and crosslinking and the ability to use a dye solution in contrast to establish the hydrogel boundaries could be a novel approach to studying hydrogel degradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drug release from a fluid-contacting biomaterial is simulated using a microfluidic device with a channel defined by solute-loaded hydrogel; as water is pumped through the channel, solute transfers from the hydrogel into the water. Optical analysis of in-situ hydrogels, characterization of the microfluidic device effluent, and NMR methods were used to find diffusion coefficients of several dyes (model drugs) in poly( ethylene glycol) diacrylate (PEG-DA) hydrogels. Diffusion coefficients for methylene blue and sulforhodamine 101 in PEG-DA calculated using the three methods are in good agreement; both dyes are mobile in the hydrogel and elute from the hydrogel at the aqueous channel interface. However, the dye acid blue 22 deviates from typical diffusion behavior and does not release as expected from the hydrogel. Importantly, only the microfluidic method is capable of detecting this behavior. Characterizing solute diffusion with a combination of NMR, optical and effluent methods offer greater insight into molecular diffusion in hydrogels than employing each technique individually. The NMR method made precise measurements for solute diffusion in all cases. The microfluidic optical method was effective for visualizing diffusion of the optically active solutes. The optical and effluent methods show potential to be used to screen solutes to determine if they elute from a hydrogel in contact with flowing fluid. Our data suggest that when designing a drug delivery device, analyzing the diffusion from the molecular level to the device level is important to establish a complete picture of drug elution, and microfluidic methods to study such diffusion can play a key role. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Finite numbers of ions are present in microfluidic devices. This leads to ion limiting effects in microfluidic channels and electrode surfaces. These effects include electrode surface changes and ion concentration gradient formation across microfluidic channels, and can influence microfluidic device behavior. A literature survey on the use of electrochemical analysis techniques in micro- and nanofluidic devices was carried out, which puts into perspective the importance of electrode surface changes with regards to analytical microfluidic applications. Surface changes in Pt wire electrodes under various physiological buffer and electric field conditions were investigated using cyclic voltammetry (CV), SEM-EDS and XPS. Effects of surface changes on electrochemical analysis performance of Pt wire and thin film electrodes were investigated. Electrode surfaces were subjected to varying phosphate buffer and electric field conditions, and their CV performance was monitored. Electrode surfaces were also studied with SEM-EDS. Two studies of ion concentration gradient formation in microfluidic channels were conducted. In the first, concentration gradients of H+ and OH- ions generated on electrode surfaces were found to cause significant pH decreases in certain buffer and electric field conditions, which was also found to play a key role in iDEP manipulation of proteins. The role of electrode surface reactions in this case shows the importance of understanding electrode surface changes in microfluidic devices. In the second study of ion concentration gradient formation, Cl- ion concentration gradient formation was attempted to be quantified upon electric field application across a KCl solution. Electrokinetic transport of the Cl- indicating fluorophore MQAE contributed significantly to the fluorescence microscopy signals collected, complicating Cl- quantification as a function of position and time. It was shown that a dielectric coating on electrode surfaces is effective at preventing MQAE electrokinetic transport.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are situations in which it is very important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct PCR method for forensic genotyping of oral swabs. The procedure developed eliminates the need for cellular digestion and extraction of the sample by performing those steps in the PCR tube itself. Then, special high-speed polymerases are added which are capable of amplifying a newly developed 7 loci multiplex in under 16 minutes. Following the amplification, a postage stamp sized microfluidic device equipped with specially designed entangled polymer separation matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires minimal equipment and can be easily performed with a small high-speed thermal-cycler, reagents, and a microfluidic device with a laptop. The system was optimized and validated using a number of test parameters and a small test population. The overall precision was better than 0.17 bp and provided a power of discrimination greater than 1 in 106. The small footprint, and ease of use will permit this system to be an effective tool to quickly screen and identify individuals detained at ports of entry, police stations and remote locations. The system is robust, portable and demonstrates to the forensic community a simple solution to the problem of rapid determination of genetic identity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this research is to investigate potential methods to produce an ion-exchange membrane that can be integrated directly into a polydimethylsiloxane Lab-on-a-Chip or Micro-Total-Analysis-System. The majority of microfluidic membranes are based on creating microporous structures, because it allows flexibility in the choice of material such that it can match the material of the microfluidic chip. This cohesion between the material of the microfluidic chip and membrane is an important feature to prevent bonding difficulties which can lead to leaking and other practical problems. However, of the materials commonly used to manufacture microfluidic chips, there are none that provide the ion-exchange capability. The DuPont product Nafion{TM} is chosen as the ion-exchange membrane, a copolymer with high conductivity and selectivity to cations and suitable for many applications such as electrolysis of water and the chlor-alkali process. The use of such an ion-exchange membrane in microfluidics could have multiple advantages, but there is no reversible/irreversible bonding that occurs between PDMS and Nafion{TM}. In this project multiple methods of physical entrapment of the ion-exchange material inside a film of PDMS are attempted. Through the use of the inherent properties of PDMS, very inexpensive sugar granulate can be used to make an inexpensive membrane mould which does not interfere with the PDMS crosslinking process. After dissolving away this sacrificial mould material, Nafion{TM} is solidified in the irregular granulate holes. Nafion{TM} in this membrane is confined in the irregular shape of the PDMS openings. The outer structure of the membrane is all PDMS and can be attached easily and securely to any PDMS-based microfluidic device through reversible or irreversible PDMS/PDMS bonding. Through impedance measurement, the effectiveness of these integrated membranes are compared against plain Nafion{TM} films in simple sodium chloride solutions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alginate microgels are widely used as delivery systems in food, cosmetics, and pharmaceutical industries for encapsulation and sustained release of hydrophilic compounds and cells. However, the encapsulation of lipophilic molecules inside these microgels remains a great challenge because of the complex oil-core matrix required. The present study describes an original two-step approach allowing the easy encapsulation of several oil microdroplets within alginate microgels. In the first step, stable oil microdroplets were formed by preparing an oil-in-water (O/W) Pickering emulsion. To stabilize this emulsion, we used two solid particles, namely the cotton cellulose nanocrystals (CNC) and calcium carbonate (CaCO3). It was observed that the surface of the oil microdroplets formed was totally covered by a CNC layer, whereas CaCO3 particles were adsorbed onto the cellulose layer. This solid CNC shell efficiently stabilized the oil microdroplets, preventing them from undesired coalescence. In the second step, oil microdroplets resulting from the Pickering emulsion were encapsulated within alginate microgels using microfluidics. Precisely, the outermost layer of oil microdroplets composed of CaCO3 particles was used to initiate alginate gelation inside the microfluidic device, following the internal gelation mode. The released Ca2+ ions induced the gel formation through physical cross-linking with alginate molecules. This innovative and easy to carry out two-step approach was successfully developed to fabricate monodisperse alginate microgels of 85 pm in diameter containing around 12 oil microdroplets of 15 mu m in diameter. These new oil-core alginate microgels represent an attractive system for encapsulation of lipophilic compounds such as vitamins, aroma compounds or anticancer drugs that could be applied in various domains including food, cosmetics, and medical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] 3D microfluidic device fabrication methods are normally quite expensive and tedious. In this paper, we present an easy and cheap alternative wherein thin cyclic olefin polymer (COP) sheets and pressure sensitive adhesive(PSA) were used to fabricate hybrid 3D microfluidic structures, by the Origami technique, which enables the fabrication of microfluidic devices without the need of any alignment tool. The COP and PSA layers were both cut simultaneously using a portable, low-cost plotter allowing for rapid prototyping of a large variety of designs in a single production step. The devices were then manually assembled using the Origami technique by simply combining COP and PSA layers and mild pressure. This fast fabrication method was applied, as proof of concept, to the generation of a micromixer with a 3D-stepped serpentine design made of ten layers in less than 8 min. Moreover, the micromixer was characterized as a function of its pressure failure, achieving pressures of up to 1000 mbar. This fabrication method is readily accessible across a large range of potential end users, such as educational agencies (schools,universities), low-income/developing world research and industry or any laboratory without access to clean room facilities, enabling the fabrication of robust, reproducible microfluidic devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The poor heating efficiency of the most reported magnetic nanoparticles (MNPs), allied to the lack of comprehensive biocompatibility and haemodynamic studies, hampers the spread of multifunctional nanoparticles as the next generation of therapeutic bio-agents in medicine. The present work reports the synthesis and characterization, with special focus on biological/toxicological compatibility, of superparamagnetic nanoparticles with diameter around 18 nm, suitable for theranostic applications (i.e. simultaneous diagnosis and therapy of cancer). Envisioning more insights into the complex nanoparticle-red blood cells (RBCs) membrane interaction, the deformability of the human RBCs in contact with magnetic nanoparticles (MNPs) was assessed for the first time with a microfluidic extensional approach, and used as an indicator of haematological disorders in comparison with a conventional haematological test, i.e. the haemolysis analysis. Microfluidic results highlight the potential of this microfluidic tool over traditional haemolysis analysis, by detecting small increments in the rigidity of the blood cells, when traditional haemotoxicology analysis showed no significant alteration (haemolysis rates lower than 2 %). The detected rigidity has been predicted to be due to the wrapping of small MNPs by the bilayer membrane of the RBCs, which is directly related to MNPs size, shape and composition. The proposed microfluidic tool adds a new dimension into the field of nanomedicine, allowing to be applied as a highsensitivity technique capable of bringing a better understanding of the biological impact of nanoparticles developed for clinical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] Therefore the understanding and proper evaluation of the flow and mixing behaviour at microscale becomes a very important issue. In this study, the diffusion behaviour of two reacting solutions of HCI and NaOH were directly observed in a glass/polydimethylsiloxane microfluidic device using adaptive coatings based on the conductive polymer polyaniline that are covalently attached to the microchannel walls. The two liquid streams were combined at the junction of a Y-shaped microchannel, and allowed to diffuse into each other and react. The results showed excellent correlation between optical observation of the diffusion process and the numerical results. A numerical model which is based on finite volume method (FVM) discretisation of steady Navier-Stokes (fluid flow) equations and mass transport equations without reactions was used to calculate the flow variables at discrete points in the finite volume mesh element. The high correlation between theory and practical data indicates the potential of such coatings to monitor diffusion processes and mixing behaviour inside microfluidic channels in a dye free environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC). The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics) to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm(3).