908 resultados para micro-ondas
Resumo:
A análise histopatológica de tecido ósseo exige uma etapa de descalcificação. O método usual consiste na imersão das amostras em ácidos, mas para além de provocarem danos tecidulares, o processo é prolongado. A utilização de micro-ondas acelera a descalcificação, mas não deve comprometer a imagem microscópica. Objetivo: Diminuir a duração da descalcificação, mantendo a qualidade da imagem microscópica. Metodologia: Foram testadas amostras de osso compacto e esponjoso. Realizou-se a descalcificação pelo método convencional e pelo método em micro-ondas, através da adaptação de um protocolo conhecido. Utilizou-se ácido nítrico a 5% e 10%. Resultados: Nos fragmentos de maiores dimensões, após 4 horas com ácido nítrico a 10% em micro-ondas, não se conseguiu uma descalcificação completa, apesar da imagem histológica ser razoável. Nos fragmentos de osso esponjoso, verificou-se uma redução de cerca de 25 horas relativamente ao método convencional. Nas biópsias, houve uma redução de aproximadamente 10 horas, utilizando ácido nítrico a 5%. Com ácido nítrico a 10% houve destruição tecidular. Nos casos em que se obteve uma descalcificação completa, a imagem microscópica apresenta fraca qualidade. Conclusão: A utilização de micro-ondas com ácido nítrico a 5%/10%, aplicando o protocolo deste estudo, reduz a duração da descalcificação, mas compromete a imagem microscópica.
Resumo:
In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings
Resumo:
Ceramic substrates have been investigated by researchers around the world and has achieved a high interest in the scientific community, because they had high dielectric constants and excellent performance in the structures employed. Such ceramics result in miniaturized structures with dimensions well reduced and high radiation efficiency. In this work, we have used a new ceramic material called lead zinc titanate in the form of Zn0,8Pb0,2TiO3, capable of being used as a dielectric substrate in the construction of various structures of antennas. The method used in constructing the ceramic combustion synthesis was Self- Sustained High Temperature (SHS - "Self-Propagating High-Temperature Synthesis") which is defined as a process that uses highly exothermic reactions to produce various materials. Once initiated the reaction area in the reaction mixture, the heat generated is sufficient to become self-sustaining combustion in the form of a wave that propagates converting the reaction mixture into the product of interest. Were analyzed aspects of the formation of the composite Zn0,8Pb0,2TiO3 by SHS powders and characterized. The analysis consisted of determining the parameters of the reaction for the formation of the composite, as the ignition temperature and reaction mechanisms. The production of composite Zn0,8Pb0,2TiO3 by SHS performed in the laboratory, was the result of a total control of combustion temperature and after obtaining the powder began the development of ceramics. The product was obtained in the form of regular, alternating layers of porous ceramics and was obtained by uniaxial pressing. 10 The product was characterized by analysis of dilatometry, X-ray diffraction analysis and scanning electron microscopy. One of the contributions typically defined in this work is the development of a new dielectric material, nevertheless presented previously in the literature. Therefore, the structures of the antennas presented in this work consisted of new dielectric ceramics based Zn0,8Pb0,2TiO3 usually used as dielectric substrate. The materials produced were characterized in the microwave range. These are dielectrics with high relative permittivity and low loss tangent. The Ansoft HFSS, commercial program employee, using the finite element method, and was used for analysis of antennas studied in this work
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The planar circuits are structures that increasingly attracting the attention of researchers, due the good performance and capacity to integrate with other devices, in the prototyping of systems for transmitting and receiving signals in the microwave range. In this context, the study and development of new techniques for analysis of these devices have significantly contributed in the design of structures with excellent performance and high reliability. In this work, the full-wave method based on the concept of electromagnetic waves and the principle of reflection and transmission of waves at an interface, Wave Concept Iterative Procedure (WCIP), or iterative method of waves is described as a tool with high precision study microwave planar circuits. The proposed method is applied to the characterization of planar filters, microstrip antennas and frequency selective surfaces. Prototype devices were built and the experimental results confirmed the proposed mathematical model. The results were also compared with simulated results by Ansoft HFSS, observing a good agreement between them.
Resumo:
The green bean has organoleptic and nutritional characteristics that make it an important food source in tropical regions such as the Northeast of Brazil. It is a cheap source of protein and important for nutrition of rural population contributing significantly in subsistence farming of the families from Brazil s northeast. It is consumed in entire region and together with the dry meat and other products composes the menu of typical restaurants, being characterized as an important product for economy of Northeast. The green bean is consumed freshly harvested and has short cycle, being characterized as a very perishable food, which hampers your market. The drying method is an alternative to increase the lifetime and provide a reduction volume of this product making easier your transportation and storage. However is necessary to search ways of drying which keep the product quality not only from the nutritional standpoint but also organoleptic. Some characteristics may change with the drying process such as the coloring, the rehydration capacity and the grains cooking time. The decrease of drying time or of exposure of the grains to high temperature minimizes the effects related with the product quality loss. Among the techniques used to reduce the drying time and improve some characteristics of the product, stands out the osmotic dehydration, widely used in combined processes such as the pretreatment in drying food. Currently the use of the microwaves has been considered an alternative for drying food. The microwave energy generates heat inside of materials processed and the heating is practically instantaneous, resulting in shorter processing times and product quality higher to that obtained by conventional methods. Considering the importance of the green beans for the Northeast region, the wastefulness of production due to seasonality of the crop and your high perishability, the proposal of this thesis is the study of drying grain by microwaves with and without osmotic pretreatment, focusing on the search of conditions of processes which favor the rehydration of the product preserving your organoleptic characteristics. Based on the analysis of the results of osmotic dehydration and dielectric properties was defined the operating condition to be used in pretreatment of the green bean, with osmotic concentration in saline solution containing 12,5% of sodium chloride, at 40°C for 20 minutes. The drying of green bean by microwave was performed with and without osmotic pretreatment on the optimized condition. The osmotic predehydration favored the additional drying, reducing the process time. The rehydration of dehydrated green bean with and without osmotic pretreatment was accomplished in different temperature conditions and immersion time according to a factorial design 22, with 3 repetitions at the central point. According to results the better condition was obtained with the osmotically pretreated bean and rehydrated at a temperature of 60°C for 90 minutes. Sensory analysis was performed comparing the sample of the green bean in natura and rehydrated in optimized conditions, with and without osmotic pretreatment. All samples showed a good acceptance rate regarding the analyzed attributes (appearance, texture, color, odor and taste), with all values above 70%. Is possible conclude that the drying of green bean by microwave with osmotic pretreatment is feasible both in respect to technical aspects and rehydration rates and sensory quality of the product
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To evaluate the variations of temperature in 2 models of domestic micro-wave ovens, single emission (F 1) and dual emission of waves (F 2), to investigate areas of higher and lower intensity of the electromagnetic field. Materials and methods: A beaker containing water (60mL, 26°C) was irradiated into each of 5 positions (front - P 1; right - P 2; posterior - P 3; left - P 4; central - P 5) within each oven (900W/ 2min). To evaluate the effectiveness of disinfection in F 2, Bacillus subtilis suspension was irradiated in each of the 5 positions for 2, 4 and 6minutes. Data were analyzed by Kruskal-Wallis and nonparametric multiple comparisons at 5% significance level. Results: 84.80°C (F 1) and 92.01°C (F 2) were mean levels of temperature. For F 1, the positions P 1, P 2, P 3 and P 5 showed similar values among them and upper than P 4, while for F 2, the positions P 1, P 2 and P 4 were similar among them and upper than P 3 and P 5. Kruskal-Wallis test found significant differences between positions and models of ovens (p<0.05). It was observed that P 2 promoted bacterial death from 4min of irradiation, while the other positions promoted disinfection at 6min of irradiation. Conclusion: The protocols of position and time specified for the various procedures in microwave ovens can be different according to the characteristics of each device due to the electromagnetic field heterogeneity. © 2011 Sociedade Portuguesa de Estomatologia e Medicina Dentária.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)