950 resultados para micro c T


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6×6 to 98×98 mm2. Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the full diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26%, for the “very small” fields smaller than 15 mm, and 0.18% for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within 1.6%. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2% to the very small field output factors. The overall uncertainties in the field output factors were 1.8% for the very small fields and 1.1% for the fields larger than 15 mm across. Recommended steps for acquiring small field output factor measurements for use in radiotherapy treatment planning system beam configuration data are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Axillary shoots of Nicotiana benthamiana were regenerated from nodal explants in two weeks using MS media supplemented with the cytokinin, kinetin (0.5 mg/L), and the auxin, indole-3-butyric acid (IBA) (0.1 mg/L). Ninety two percent of shoots were 2.1-20 mm tall, a size ideal for root induction. After transfer to hormone-free MS they readily produced roots within seven days, with phenotypically normal, fully developed plants being obtained within four weeks. Leaf chlorosis due to iron deficiency was observed in plants over time, however, this was overcome by doubling the concentration of inorganic iron. This rapid micro-propagation system is particularly useful for the in vitro mass production of N. benthamiana plants for various biotechnological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An apparatus is described that facilitates the determination of incorporation levels of isotope labelled, gaseous precursors into volatile insect-derived metabolites. Atmospheres of varying gas compositions can be generated by evacuation of a working chamber followed by admission of the required levels of component gases, using a precision, digitised pressure read-out system. Insects such as fruit-flies are located initially in a small introduction chamber, from which migration can occur downwards into the working chamber. The level of incorporation of labelled precursors is continuously assayed by the Solid Phase Micro Extraction (SPME) technique and GC-MS analyses. Experiments with both Bactrocera species (fruit-flies) and a parasitoid wasp, Megarhyssa nortoni nortoni (Cresson) and oxygen-18 labelled dioxygen illustrate the utility of this system. The isotope effects of oxygen-18 on the carbon-13 NMR spectra of 1,7- dioxaspiro[5,5]undecane are also described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explosive driven micro blast waves are generated in the laboratory using NONEL tubes. The explosive mixture coated to the inner walls of the plastic Nonel tube comprises of HMX and Aluminum ( 18mg/m). The detonation is triggered electrically to generate micro blast waves from the open end of the tube. Flow visualization and over pressure measurements have been carried out to understand the propagation dynamics of these micro-blast waves in both confined and unconfined domains. The classical cubic root law used for large scale blast correlation appears to hold good even for these micro-blasts generated in the laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NONEL tube finds vast applications in civil and military because of its safe and confined explosion technique. Spectroscopic and chemical analysis of a NONEL tube with an uniform mixture of HMX and Al is reported here. Peak temperature obtained at the open end of the NONEL tube due to the detonation of the explosive has been calculated using Planck’s radiation law. The products of the chemical reaction taking place due to the ignition of HMX + Al are characterized using FTIR spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been suggested to accurately determine the DBTT of diffusion aluminide bond coats. Micro-tensile testing of free-standing coating samples has been carried out. The DBTT was determined based on the variation of plastic strain-to-fracture with temperature. The positive features of this method over the previously reported techniques are highlighted. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence (PL) properties of nano- and micro-crystalline Hg1-xCdxTe (x approximate to 0.8) grown by the solvothermal method have been studied over the temperature range 10-300 K. The emission spectra of the samples excited with 514.5 nm Ar+ laser consist of five prominent bands around 0.56, 0.60, 0.69, 0.78 and 0.92 eV. The entire PL band in this NIR region is attributed to the luminescence from defect centers. The features like temperature independent peak energy and quite sensitive PL intensity, which has a maximum around 50 K is illustrated by the configuration coordinate model. After 50 K, the luminescence shows a thermal quenching behavior that is usually exhibited by amorphous semiconductors, indicating that the defects are related to the compositional disorder. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brittle-to-ductile-transition-temperature (BDTT) of free-standing Pt-aluminide (PtAl) coating specimens, i.e. stand-alone coating specimens without any substrate, was determined by micro-tensile testing technique. The effect of Pt content, expressed in terms of the thickness of initial electro-deposited Pt layer, on the BDTT of the coating has been evaluated and an empirical correlation drawn. Increase in the electrodeposited Pt layer thickness from nil to 10 mu m was found to cause an increase in the BDTT of the coating by about 100 degrees C.

Relevância:

30.00% 30.00%

Publicador: