34 resultados para metadynamic recrystallisation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between the microstructure and the magnetic properties of soft magnetic materials, have been studied by different researchers who seek to employ electrical systems, increasing their life span and reduce their energy consumption. Following this same line the Brazilian Synchrotron Light Laboratory developed a new synchrotron light source, the Sirius, where magnetic materials with high magnetic permeability values are being studied for use in accelerator dipoles. The low carbon steel is a ferromagnetic material that has a great relationship between cost and magnetic permeability. Aiming to raise the values of permeability of the material, heat treatments were done and evaluated the magnetic properties, microstructure and mechanical properties to correlate them. It was noted that the thermal annealing were the most effective, and the annealing performed with a small time threshold, which only phenomenon observed was the primary recrystallisation, was the most elevated values of magnetic permeability of the material, due to the average grain size ideal achieved. The heat treatments do not guide the magnetic domains of the material and not influence the mechanical properties of the material due to lack of carbon in the microstructure. The annealing treatments were shown to be an alternative to raising the values of the magnetic permeability of the material and facilitate the implementation of ultra low carbon steel in the dipoles of Sirius

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The albendazole and mebendazole drugs are benzimidazole derivatives and belong to the anthelmintic class. These drugs are particularly recommended for the treatment against worms present in the gastrointestinal tract of animals and humans, by acting directly on the worm metabolism. The need for thermally study drugs is related to all the parameters that these analyzes include: presence or absence of polymorphs, possible changes in the crystallinity of the drugs, as well as the quality control during the manufacturing process thereof. In this study the thermal behavior of anthelmintic albendazole and commercial mebendazole and its recrystallisation in organic solvents, such as acetic acid and formic acid in dimethylformamide to mebendazole, and albendazole were studied using TG-DSC techniques, TG-FTIR, FTIR and XRD. TG-DSC techniques were used so it could collect information about the thermal stability of the compounds steps for thermal decomposition process and also prove its melting temperature. For recrystallization of drugs in organic solvents, the TG-DSC curves were analyzed to compare and determine that the occurrence of polymorphs. The coupled TG-FTIR technique allowed the analysis of volatile products which were released during the thermal decomposition of the commercial mebendazole. The absorption spectroscopy in the infrared region was performed to mebendazole, and albendazole in order to show the difference in functional groups of both, comparing the spectra with commercial drugs and see if there was recrystallized changes in the absorption band where the drug was recrystallized or when heated. The diffraction technique by powder X-ray method was used for comparison of the crystal structures of commercial drugs and recrystallization in organic solvents to identify changes in crystallinity both, which might suggest the formation of polymorphs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mögliche Verformungsmechanismen, die zu den verschiedenen Glimmer- und Mineralfischen führen, sind: intrakristalline Verformung, Kristallrotation, Biegung und Faltung, Drucklösung in Kombination mit Ausfällung und dynamische Rekristallisation oder Mechanismen, die ein großes Mineral in mehrere kleine, fischförmige Kristalle aufspalten.Experimente mit ein neues Verformungsgerät und Objekten in zwei verschiedenen Matrixmaterialien werden beschrieben. Das eine ist PDMS, (Newtonianisch viskoses Polymer), und das andere Tapioca Perlen (Mohr-Couloumb Verhalten). Die Rotation von fischförmigen Objekten in PDMS stimmt mit der theoretischen Rotationsrate für ellipsenförmige Objekte in einem Newtonianischen Material überein. In einer Matrix von Tapioca Perlen nehmen die Objekte eine stabile Lage ein. Diese Orientierung ist vergleichbar mit der von Glimmerfischen. Die Verformung in der Matrix von Tapioca Perlen ist konzentriert auf dünne Scherzonen. Diese Ergebnisse implizieren, daß die Verformung in natürlichen Gesteinen auch in dünnen Scherzonen konzentriert ist.Computersimulationen werden beschrieben, mit denen der Einfluß der Eigenschaften einer Matrix auf die Rotation von Objekten und Verteilung von Deformation untersucht wird.Mit diesen Experimenten wird gezeigt, daß die Orientierung von Glimmerfischen nicht mit Verformung in einem nicht-linearen viskosen Material erklärt werden kann. Eine solche nicht-lineare Rheologie wird im Allgemeinen für die Erdkurste angenommen. Die stabile Orientierung eines Objektes kann mit weicheren Lagen in der Matrix erklärt werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Vordergrund der vorliegenden Arbeit stand die Synthese konjugierter Oligomere und Polymere vom Phenylenvinylen-Typ, die Elektronenakzeptorsubstituenten tragen, sowie die Darstellung von Oligo(phenylenvinylen)en mit reaktiven Alkoxysilylgruppen, die durch Hydrolyse und Polykondensation zu amorphen und filmbildenden Materialien mit definierten Chromophoren umgewandelt werden können.Der Aufbau von Oligo(phenylenvinylen)en (OPVs) und Poly(phenylenvinylen)en (PPVs) mit Elektronenakzeptoren an den aromatischen Kernen wurde über die Heck-Reaktion substituierter Divinylaromaten mit Dibromaromaten durchgeführt. Dazu wurde eine einfache Synthese von Divinylaromaten mit Elektronenakzeptor-substituenten über die zweifache Vinylierung der 1,4-Dibromaromaten mit Ethen bei erhöhtem Druck entwickelt.OPVs haben sich als Emitter in lichtemittierenden Dioden (LEDs) bewährt, ein zentrales Problem bei der Verwendung wohldefinierter niedermolekularer Verbindungen ist deren Kristallisationstendenz. Eine hier angewendete Strategie zur Unterdrückung der Rekristallisation beinhaltet die Verknüpfung stilbenoider Chromophore über ein gemeinsames Silizium-Atom, zu dreidimensionalen Verbindungen. Alternativ können durch die Verknüpfung definierter Chromophore mit Alkoxysilanen Monomere erzeugt werden, die für den Aufbau von Kammpolymeren mit Polysiloxanhauptkette oder von Siloxan-Netzwerken genutzt werden können, um amorphe und filmbildende Materialien aufzubauen. Die Darstellung der Tetrakis-OPV-silane wurde über Horner-Olefinierungen stilbenoider Aldehyde mit einem tetraedrischen Phosphonester mit Si-Zentralatom durchgeführt. Die Verknüpfung stilbenoider Chromophore mit Alkoxysilanen zu polykondensierbaren Monomeren erfolgte über Heck-Reaktion oder gekreuzte Metathese Reaktionen. Eine Verknüpfung über flexible Spacer wird durch Kondensation der Oligostyrylbenzaldehyde mit Aminopropylethoxysilanen zu Schiffschen Basen und deren Reduktion mit Cyanoborhydrid zu sekundären Aminen erzeugt. Die Chromophore, OPVs oder Diaryloxadiazole, mit Kieselsäureestergruppen lassen sich durch saure Hydrolyse und Kondensation zu gut löslichen, fluoreszierenden Oligomeren umwandeln, die entweder ringöffnend polymerisierbar oder zu unlöslichen Filmen vernetzbar sind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to date any geological event, suitable mineral geochronometers that record that and only that event must be identified and analyzed. In the case of metasomatism, recrystallisation is a key process that controls both the petrology and the isotopic record of minerals. It can occur both in the form of complete neocrystallisation (e.g. in a vein) and in the form of pseudomorphism, whereby dissolution/reprecipitation at the submicroscopic scale plays a central role. Recrystallisation may be complete or not, raising the possibility that relicts of a pre-metasomatic assemblage may be preserved. Because recrystallisation is energetically less costly at almost any temperature than diffusion, and because radiogenic isotopes (except 4He) never diffuse faster than major elements forming the mineral structure, there is a strong causal link between petrographic relicts and isotopic inheritance (as demonstrated for zircon, monazite, titanite, amphibole, K-feldspar, biotite, and muscovite). Metasomatic assemblages commonly contain such mixtures between relicts and newly formed phases, whose geochronology is slightly more complex than that of simple, ideal systems, but can be managed by techniques that have become routine in the last decade and which are described in this chapter. Because of its crucial role in controlling the isotope systematics, the petrogenesis of a mineral needs to be understood in extreme detail, especially using microchemical analyses and micro-imaging techniques, before mineral ages can be correctly interpreted. As the occurrence of recrystallization is limited by the availability of water, minerals act as “geohygrometers” that allow constraints to be placed on the nature and age of fluid circulation episodes, especially metasomatic events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms of Ar release from K-feldspar samples in laboratory experiments and during their geological history are assessed here. Modern petrology clearly established that the chemical and isotopic record of minerals is normally dominated by aqueous recrystallization. The laboratory critique is trickier, which explains why so many conflicting approaches have been able to survive long past their expiration date. Current models are evaluated for self-consistency; especially Arrhenian non-linearity leads to paradoxes. The models’ testable geological predictions suggest that temperature-based downslope extrapolations often overestimate observed geological Ar mobility substantially. An updated interpretation is based on the unrelatedness of geological behaviour to laboratory experiments. The isotopic record of K-feldspar in geological samples is not a unique function of temperature, as recrystallisation promoted by aqueous fluids is the predominant mechanism controlling isotope transport. K-feldspar should therefore be viewed as a hygrochronometer. Laboratory degassing proceeds from structural rearrangements and phase transitions such as are observed in situ at high temperature in Na and Pb feldspars. These effects violate the mathematics of an inert Fick’s Law matrix and preclude downslope extrapolation. The similar upward-concave, non-linear shapes of Arrhenius trajectories of many silicates, hydrous and anhydrous, are likely common manifestations of structural rearrangements in silicate structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unusual ice type, called hair ice, grows on the surface of dead wood of broad-leaf trees at temperatures slightly below 0 °C. We describe this phenomenon and present physical, chemical, and biological investigations to gain insight in the properties and processes related to hair ice. Tests revealed that the biological activity of a winter-active fungus is required in the wood for enabling the growth of hair ice. We confirmed the fungus hypothesis originally suggested by Wegener (1918) by reproducing hair ice on wood samples. Treatment by heat and fungicide suppresses the formation of hair ice. Fruiting bodies of Asco- and Basidiomycota are identified on hair-ice-carrying wood. One species, Exidiopsis effusa (Ee), was present on all investigated samples. Both hair-ice-producing wood samples and those with killed fungus show essentially the same temperature variation, indicating that the heat produced by fungal metabolism is very small, that the freezing rate is not influenced by the fungus activity, and that ice segregation is the common mechanism of ice growth on the wood surface. The fungus plays the role of shaping the ice hairs and preventing them from recrystallisation. Melted hair ice indicates the presence of organic matter. Chemical analyses show a complex mixture of several thousand CHO(N,S) compounds similar to fulvic acids in dissolved organic matter (DOM). The evaluation reveals decomposed lignin as being the main constituent. Further work is needed to clarify its role in hair-ice growth and to identify the recrystallisation inhibitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time– fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Maud Belt in Dronning Maud Land (western East Antarctic Craton) preserves a high-grade polyphase tectono-thermal history with two orogenic episodes of Mesoproterozoic (1.2-1.0 Ga) and Neoproterozoic (0.6-0.5 Ga) age. New SHRIMP U-Pb zircon data from southern Gjelsvikfjella in the northeastern part of the belt make it possible to differentiate between a series of magmatic and metamorphic events. The oldest event recorded is the formation of an extensive 1140-1130 Ma volcanic arc. This was followed by 1104 ± 8 Ma granitoids that might represent, together with so far undated mafic dykes, part of a decompression melting-related bimodal suite that reflects the sub-continental Umkondo igneous event. The first high-grade metamorphism is constrained at 1070 Ma. The metamorphic age data are similar to those obtained from other parts of the Maud Belt, but also from the Namaqua-Natal Belt in South Africa, but the preceding arc formation was diachronous in the two belts. This indicates that the two belts did not form a continuous volcanic arc unit as suggested in previous models, but became connected only at the end of the Mesoproterozoic. Intense reworking during the Neoproterozoic, probably as a result of continent-continent collision between components of Gondwana, is indicated by ductile refliation, further high-grade metamorphic recrystallisation and metamorphic zircon overgrowths at approximately 530 Ma. This was followed by late- to post-tectonic magmatism, reflected by 500 Ma granite bodies and 490 Ma aplite dykes as well as a 480 Ma gabbro body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tensile deformation behavior of a range of supersaturated Mg-Al solid solutions and an as-cast magnesium alloy AM60 has been studied. The Mg-Al alloys were tested at room temperature while the alloy AM60 was tested in the temperature range 293-573 K. The differences in the deformation behavior of the alloys is discussed in terms of hardening and softening processes. In order to identify which processes were active, the stress dependence of the strain-hardening coefficient was assessed using Lukac and Balik's model of hardening and softening. The analysis indicates that hardening involves solid solution hardening and interaction with forest dislocations and non-dislocation obstacles such as second phase particles. Cross slip is not a significant recovery process in the temperature range 293-423 K. At temperatures between 473 and 523 K the analysis suggests that softening is controlled by cross slip and climb of dislocations. At temperatures above 523 K softening seems to be controlled by dynamic recrystallisation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (< 2 mu m) from the sandstones containing no K-feldspar yield K-Ar ages of around 400 Ma, whereas the K-Ar ages of authigenic clays of > 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mõssbauer spectroscopy and X-ray diffraction of five coals revealed the presence of pyrite, illite, kaolinite and Quartz, together with other minor phases. Analysis of the coal ashes indicated the formation of hematite and an Fe (3+) paramagnetic phase, the latter resulting from .the dehydroxylation of the clay minerals during ashing at 700 to 750 C. By using a combination of several physicochemical methods, different successive stages of dehydroxylation, structural consolidation, and recrystallisation of illite, montmorillonite and hectorite upon thermal treatment to 1300 C were investigated. Dehydroxylation of the clay minerals occurred between 450 and 750 C, the X-ray crysdallinity of illite and montmorillonite remaining until 800 C. Hectorite gradually recrystallises to enstatite at temperatures above 700°C. At 900 C the crystalline structure of all three clay minerals had totally collapsed. Solid state reactions occurred above 900 C producing such phases as spinel, hematite, enstatite, cristobalite and mullite. Illite and montmorillonite started to melt between 1200 and 1300°C, producing a silicate glass that contained Fe(3+) and Fe(2+) ions. Ortho-pnstatite, clino-enstatite and proto-enstatite were identified in the thermal products of hectorite, their relative proportions varying with temperature. Protoenstatite was stabilised with respect to metastable clinoenstatite upon cooling from 12000 C by the presence of exchanged transition metal cations. Solid state Nuclear Magnetic Resonance spectroscopy of thermally treated transition metal exchanged hectorite indicated the levels at which paramagnetic cations could be loaded on to the clay before spectral resolution is significantly diminished.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel direct compression tableting excipient has been made by recrystallisation of lactose. The particles produced had high porosity, high specific surface area and high surface roughness. The resistance to segregation of ordered mixes formed between a model drug; potassium chloride and the excipients recrystallised lactose, spray crystallised maltose-dextrose (Emdexl and a direct compacting sugar (Dipac) was studied using a vibrational segregation model. The highly porous excipients, Emdex and recrystallised lactose formed ordered mixes which did not segregate even at high accelerations and low frequencies whereas the relatively smooth excipient, Dipac, displayed marked segregation in most vibration conditions. The vibrations were related to practical conditions measured in pharmaceutical process machinery. The time required to form an ordered mix was inversely related to the stability of the mix when subjected to vibration. An ultracentrifuge technique was developed to determine the interparticle adhesion forces holding drug and excipient particles together as ordered units. Excipient powders such as Emdex and recrystallised lactose, which formed non-segregating ordered mixes, had high interparticle adhesion forces. Other ordered mixes that segregated when subjected to different vibration conditions were found to have large quantities of weekly-bound drug particles; such mixes included those with Dipac as the carrier excipient as well as those containing a high concentration of drug. The electrostatic properties of different drug and excipient powders were studied using a Faraday well and an electrometer. Excipient powders such as Emdex and recrystallised lactose which formed stable ordered mixes also had a widely different surface charge in comparison with drug particles, whereas Dipac had a similar surface charge to the drug particles and formed unstable ordered mixes. A specially constructed triboelectric charging apparatus based on an air cyclone was developed to increase the affinity of drug particles for different excipient particles. Using triboelectrification to increase the interparticle adhesion forces, the segregation tendencies of unstable ordered mixes were greatly reduced. The stability of ordered mixes is shown to be related to both the surface physical characteristics and the surface electrical properties of the constituent carrier (excipientl particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cs exchanged silicotungstic acid catalysts of general formula CsxH4−xSiW12O40 (x = 0.8–4) have been synthesised and characterised by a range of techniques including elemental analysis, N2 gas adsorption, XRD, XPS and NH3 flow calorimetry. Cs substitution promotes recrystallisation of the parent H4SiW12O40 polyoxometallate to the Cs4 salt, via a stable intermediate phase formed at compositions between Cs0.8–2.8. This recrystallisation is accompanied by a pronounced rise and subsequent fall in porosity, with a maximum mesopore volume obtained for materials containing 2.8 Cs atoms per Keggin unit. Calorimetry reveals all CsxH4−xSiW12O40 are strong acids, with ΔHθads(NH3) ranging from −142 to 116 kJ mol−1 with increasing Cs content, consistently weaker than their phosphotungstic analogues. CsxH4−xSiW12O40 materials are active catalysts for both C4 and C8 triglyceride transesterification, and palmitic acid esterification with methanol. For loadings ≤0.8 Cs per Keggin, (trans)esterification activity arises from homogeneous contributions. However, higher degrees of substitution result in entirely heterogeneous catalysis, with rates proportional to the density of accessible acid sites present within mesopores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germanium was of great interest in the 1950’s when it was used for the first transistor device. However, due to the water soluble and unstable oxide it was surpassed by silicon. Today, as device dimensions are shrinking the silicon oxide is no longer suitable due to gate leakage and other low-κ dielectrics such as Al2O3 and HfO2 are being used. Germanium (Ge) is a promising material to replace or integrate with silicon (Si) to continue the trend of Moore’s law. Germanium has better intrinsic mobilities than silicon and is also silicon fab compatible so it would be an ideal material choice to integrate into silicon-based technologies. The progression towards nanoelectronics requires a lot of in depth studies. Dynamic TEM studies allow observations of reactions to allow a better understanding of mechanisms and how an external stimulus may affect a material/structure. This thesis details in situ TEM experiments to investigate some essential processes for germanium nanowire (NW) integration into nanoelectronic devices; i.e. doping and Ohmic contact formation. Chapter 1 reviews recent advances in dynamic TEM studies on semiconductor (namely silicon and germanium) nanostructures. The areas included are nanowire/crystal growth, germanide/silicide formation, irradiation, electrical biasing, batteries and strain. Chapter 2 details the study of ion irradiation and the damage incurred in germanium nanowires. An experimental set-up is described to allow for concurrent observation in the TEM of a nanowire following sequential ion implantation steps. Grown nanowires were deposited on a FIB labelled SiN membrane grid which facilitated HRTEM imaging and facile navigation to a specific nanowire. Cross sections of irradiated nanowires were also performed to evaluate the damage across the nanowire diameter. Experiments were conducted at 30 kV and 5 kV ion energies to study the effect of beam energy on nanowires of varied diameters. The results on nanowires were also compared to the damage profile in bulk germanium with both 30 kV and 5 kV ion beam energies. Chapter 3 extends the work from chapter 2 whereby nanowires are annealed post ion irradiation. In situ thermal annealing experiments were conducted to observe the recrystallization of the nanowires. A method to promote solid phase epitaxial growth is investigated by irradiating only small areas of a nanowire to maintain a seed from which the epitaxial growth can initiate. It was also found that strain in the nanowire greatly effects defect formation and random nucleation and growth. To obtain full recovery of the crystal structure of a nanowire, a stable support which reduces strain in the nanowire is essential as well as containing a seed from which solid phase epitaxial growth can initiate. Chapter 4 details the study of nickel germanide formation in germanium nanostructures. Rows of EBL (electron beam lithography) defined Ni-capped germanium nanopillars were extracted in FIB cross sections and annealed in situ to observe the germanide formation. Chapter 5 summarizes the key conclusions of each chapter and discusses an outlook on the future of germanium nanowire studies to facilitate their future incorporation into nanodevices.