992 resultados para metacyclic yields
Resumo:
In this work we have studied the modifications in the biological properties of Trypanosoma cruzi when the parasite is maintained for a long time in axenic culture. The studies were done with a clone from an avirulent strain (Dm30L) and a non-cloned virulent strain (EP) of T. cruzi. Both parasiteswere maintained, for at least three years, by successive triatomine/mouse alternate passage (control condition), or by serial passage in axenic medium (culture condition), or only in the mouse (mouse condition). The comparison between parasites of culture and control condition showed that metacyclogenesis capacity was reduced in the former and that the resulting metacyclics displayed an attenuatedvirulence. In order to compare the virulence of metacyclics from the urine of the insect vector, Rhodnius prolixus were infected by artificial feeding with parasites of the control or culture condition. After three triatomine/triatomine passages, there was observed an almost identical biological behavior for these parasites, hence indicating that the maintenance of T. cruzi for a long time in axenic culture affects the differentiation capacity and the virulence of the parasite. Additionally, it was demonstrated that it is possible to maintain T. cruzi exclusively through passages in the invertebrate host.
Resumo:
In this study we examined whether the maintenance of Trypanosoma cruzi by long-time in axenic culture produces changes in gene expression and antigenic profiles. The studies were made with a Dm30L-clone from a low-virulent strain and a non-cloned virulent EP-strain of T. cruzi. Both parasites were maintained, for at least seven years, by successive alternate passage triatomine/mouse (triatomine condition), or by serial passage in axenic medium (culture condition). The comparison of the [35S]methionine metabolic labeling products of virulent and non-virulent parasites by 2D-SDS-PAGE, clearly indicates that the expression of metacyclic trypomastigotes (but not of epimastigotes) proteins have been altered by laboratory maintenance conditions. Western blot analysis of EP and Dm30L-epimastigotes using a serum anti-epimastigotes revealed that although most of antigens are conserved, four antigens are characteristics of triatomine condition parasites and three other are characteristics of culture condition parasites. Anti-metacyclics serum revealed significative differences in EP- and Dm30L-metacyclic trypomastigotes from triatomine condition. However, avirulent metacyclic forms were antigenically very similar. These results suggest that besides a possible selection of avirulent subpopulation from T. cruzi strains genetically heterogeneous when maintained by long time in axenic culture, changes in virulence might be due to post-translational modifications of the antigens induced by the absence of the natural alternability (vertebrate-invertebrate) in the life-cycle of T. cruzi
The Metacyclic Stage-expressed Meta-1 Gene is Conserved between Old and New World Leishmania Species
Resumo:
Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU) medium at 37°C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a) T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b) the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.
Resumo:
Amastigogenesis occurs first when metacyclic trypomastigotes from triatomine urine differentiate into amastigotes inside mammalian host cells and a secondary process when tissue-derived trypomastigotes invade new cells and differentiate newly to amastigotes. Using scanning electron microscopy, we compared the morphological patterns manifested by trypomastigotes and metacyclic forms of Trypanosoma cruzi during their axenic-transformation to amastigotes in acidic medium at 37°C. We show here that in culture MEMTAU medium, secondary and primary axenic amastigogenesis display different morphologies. As already described, we also observed a high differentiation rate of trypomastigotes into amastigotes. Conversely, the transformation rate of in vitro-induced-metacyclic trypomastigotes to amastigotes was significantly slower and displayed distinct patterns of transformation that seem environment-dependent. Morphological comparisons of extracelullar and intracellular amastigotes showed marked similarities, albeit some differences were also detected. SDS-PAGE analyses of protein and glycoprotein from primary and axenic extracelullar amastigotes showed similarities in glycopeptide profiles, but variations between their proteins demonstrated differences in their respective macromolecular constitutions. The data indicate that primary and axenic secondary amastigogenesis of T. cruzi may be the result of different developmental processes and suggest that the respective intracellular mechanisms driving amastigogenesis may not be the same.
Resumo:
Small non-coding RNAs derived from transfer RNAs have been identified as a broadly conserved prokaryotic and eukaryotic response to stress. Their presence coincides with changes in developmental state associated with gene expression regulation. In the epimastigote form of Trypanosoma cruzi, tRNA fragments localize to posterior cytoplasmic granules. In the infective metacyclic form of the parasite, we found tRNA-derived fragments to be abundant and evenly distributed within the cytoplasm. The fragments were not associated with polysomes, suggesting that the tRNA-derived fragments may not be directly involved in translation control in metacyclics.
Resumo:
Trypanosoma cruzi infects humans when infected triatomine vector excreta contaminate breaks in skin or mucosal surfaces. T. cruzi insect-derived metacyclic trypomastigotes (IMT) invade through gastric mucosa after oral challenges without any visible inflammatory changes, while cutaneous and conjunctival infections result in obvious local physical signs. In this study we compared the infectivity of T. cruzi IMT in mice after cutaneous and oral contaminative challenges simulating natural infections. The 50% infective dose (ID50) for oral challenge was 100 fold lower than the ID50for cutaneous challenge, indicating that oral mucosal transmission is more efficient than cutaneous transmission.
Resumo:
The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.
Resumo:
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Resumo:
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.
Resumo:
Selostus: Seleenilannoituksen vaikutus raiheinän ja salaatin laatuun
Resumo:
Selostus: Timoteilajikkeiden sadot, kasvuominaisuudet sekä typpi- ja kuitupitoisuus kahdella leveysasteella