918 resultados para melt extrusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory–Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions.
Method:  Solid dispersions were characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry) and spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. 
Key Findings: Spray drying permitted generation of amorphous solid dispersions to be produced across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug–polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. 
Conclusion: Using temperature–composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication, solid-state/melt extrusion (SSME) is introduced as a novel technique that combines solid-state shear pulverization (SSSP) and conventional twin screw extrusion (TSE) in a single extrusion system. The morphology and property enhancements in a model linear low-density polyethylene/organically modified clay nanocomposite sample fabricated via SSME were compared to those fabricated via SSSP and TSE. The results show that SSME is capable of exfoliating and dispersing the nanofillers similarly to SSSP, while achieving a desirable output rate and producing extrudate similar in form to that from TSE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polylactic acid (PLA) is a bio-derived, biodegradable polymer with a number of similar mechanical properties to commodity plastics like polyethylene (PE) and polyethylene terephthalate (PETE). There has recently been a great interest in using PLA to replace these typical petroleum-derived polymers because of the developing trend to use more sustainable materials and technologies. However, PLA¿s inherent slow crystallization behavior is not compatible with prototypical polymer processing techniques such as molding and extrusion, and in turn inhibits its widespread use in industrial applications. In order to make PLA into a commercially-viable material, there is a need to process the material in such a way that its tendency to form crystals is enhanced. The industry standard for producing PLA products is via twin screw extrusion (TSE), where polymer pellets are fed into a heated extruder, mixed at a temperature above its melting temperature, and molded into a desired shape. A relatively novel processing technique called solid-state shear pulverization (SSSP) processes the polymer in the solid state so that nucleation sites can develop and fast crystallization can occur. SSSP has also been found to enhance the mechanical properties of a material, but its powder output form is undesirable in industry. A new process called solid-state/melt extrusion (SSME), developed at Bucknell University, combines the TSE and SSSP processes in one instrument. This technique has proven to produce moldable polymer products with increased mechanical strength. This thesis first investigated the effects of the TSE, SSSP, and SSME polymer processing techniques on PLA. The study seeks to determine the process that yields products with the most enhanced thermal and mechanical properties. For characterization, percent crystallinity, crystallization half time, storage modulus, softening temperature, degradation temperature and molecular weight were analyzed for all samples. Through these characterization techniques, it was observed that SSME-processed PLA had enhanced properties relative to TSE- and SSSP-processed PLA. Because of the previous findings, an optimization study for SSME-processed PLA was conducted where throughput and screw design were varied. The optimization study determined PLA processed with a low flow rate and a moderate screw design in an SSME process produced a polymer product with the largest increase in thermal properties and a high retention of polymer structure relative to TSE-, SSSP-, and all other SSME-processed PLA. It was concluded that the SSSP part of processing scissions polymer chains, creating defects within the material, while the TSE part of processing allows these defects to be mixed thoroughly throughout the sample. The study showed that a proper SSME setup allows for both the increase in nucleation sites within the polymer and sufficient mixing, which in turn leads to the development of a large amount of crystals in a short period of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis has developed an innovative additive manufacturing technology platform, which combines melt electrospinning with direct writing, allowing the fabrication of a new class of highly-ordered ultrafine fibrous materials. Bioresorbable polymer fibres were printed using a variety of designs, with filament resolutions not demonstrated by established melt-extrusion based direct writing processes, to form novel medical devices. This platform was applied to tissue engineering scaffold design, where structures were prepared in a variety of shapes and forms, characterised and then seeded with cells to investigate their biocompatibility, cell-seeding and proliferation behaviour as well as the ability to guide cell growth and differentiation.