926 resultados para maximum-likelihood approach
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L-infinity. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.
Resumo:
Quasi-likelihood (QL) methods are often used to account for overdispersion in categorical data. This paper proposes a new way of constructing a QL function that stems from the conditional mean-variance relationship. Unlike traditional QL approaches to categorical data, this QL function is, in general, not a scaled version of the ordinary log-likelihood function. A simulation study is carried out to examine the performance of the proposed QL method. Fish mortality data from quantal response experiments are used for illustration.
Resumo:
Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.
Resumo:
Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.
Resumo:
In this paper, we consider the setting of the pattern maximum likelihood (PML) problem studied by Orlitsky et al. We present a well-motivated heuristic algorithm for deciding the question of when the PML distribution of a given pattern is uniform. The algorithm is based on the concept of a ``uniform threshold''. This is a threshold at which the uniform distribution exhibits an interesting phase transition in the PML problem, going from being a local maximum to being a local minimum.
Resumo:
This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.
Resumo:
Noise-predictive maximum likelihood (NPML) is a well known signal detection technique used in partial response maximum likelihood (PRML) scheme in 1D magnetic recording channels. The noise samples colored by the partial response (PR) equalizer are predicted/ whitened during the signal detection using a Viterbi detector. In this paper, we propose an extension of the NPML technique for signal detection in 2D ISI channels. The impact of noise prediction during signal detection is studied in PRML scheme for a particular choice of 2D ISI channel and PR targets.
Resumo:
We show that the sensor localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we develop fully decentralized versions of the Recursive Maximum Likelihood and the Expectation-Maximization algorithms to localize the network. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a message passing algorithm to propagate the derivatives of the likelihood. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we show that the developed algorithms are able to learn the localization parameters well.