873 resultados para marine aquaculture
Resumo:
Marine yeast have been regarded as safe and showing a beneficial impact on biotechnological process. It provides better nutritional and dietary values indicating their potential application as feed supplements in aquaculture. Brown et al. (1996) evaluated all the marine yeasts characterised with high protein content, carbohydrate, good amino acid composition and high levels of saturated fats. However, there is paucity of information on marine yeasts as feed supplements and no feed formulation has been found either in literature or in market supplemented with them. This statement supported by Zhenming et al. (2006) reported still a lack of feed composed of single cell protein (SCP) from marine yeasts with high content of protein and other nutrients. Recent research has shown that marine yeasts also have highly potential uses in food, feed, medical and biofuel industries as well as marine biotechnology (Chi et al., 2009; 2010). Sajeevan et al. (2006; 2009a) and Sarlin and Philip (2011) demonstrates that the marine yeasts Candida sake served as a high quality, inexpensive nutrient source and it had proven immunostimulatory properties for cultured shrimps. This strain has been made part of the culture collection of National Centre for Aquatic Animal Health, Cochin University of Science and Technology as Candida MCCF 101. Over the years marine yeasts have been gaining increased attention in animal feed industry due to their nutritional value and immune boosting property.Therefore, the present study was undertaken, and focused on the nutritional quality, optimization of large scale production and evaluation of its protective effect on Koi carp from Aeromonas infection
Resumo:
The aim of this thesis was to investigate some important key factors able to promote the prospected growth of the aquaculture sector. The limited availability of fishmeal and fish oil led the attention of the aquafeed industry to reduce the dependency on marine raw materials in favor of vegetable ingredients. In Chapter 2, we reported the effects of fishmeal replacement by a mixture of plant proteins in turbot (Psetta maxima L.) juveniles. At the end of the trial, it was found that over the 15% plant protein inclusion can cause stress and exert negative effects on growth performance and welfare. Climate change aroused the attention of the aquafeed industry toward the production of specific diets capable to counteract high temperatures. In Chapter 3, we investigated the most suitable dietary lipid level for gilthead seabream (Sparus aurata L.) reared at Mediterranean summer temperature. In this trial, it was highlighted that 18% dietary lipid allows a protein sparing effect, thus making the farming of this species economically and environmentally more sustainable. The introduction of new farmed fish species makes necessary the development of new species-specific diets. In Chapter 4, we assessed growth response and feed utilization of common sole (Solea solea L.) juveniles fed graded dietary lipid levels. At the end of the trial, it was found that increasing dietary lipids over 8% led to a substantial decline in growth performance and feed utilization indices. In Chapter 5, we investigated the suitability of mussel meal as alternative ingredient in diets for common sole juveniles. Mussel meal proved to be a very effective alternative ingredient for enhancing growth performance, feed palatability and feed utilization in sole irrespectively to the tested inclusion levels. This thesis highlighted the importance of formulating more specific diets in order to support the aquaculture growth in a sustainable way.
Resumo:
Mode of access: Internet.
Resumo:
A moratorium on further bivalve leasing was established in 1999–2000 in Prince Edward Island (Canada). Recently, a marine spatial planning process was initiated explore potential mussel culture expansion in Malpeque Bay. This study focuses on the effects of a projected expansion scenario on productivity of existing leases and available suspended food resources. The aim is to provide a robust scientific assessment using available datasets and three modelling approaches ranging in complexity: (1) a connectivity analysis among culture areas; (2) a scenario analysis of organic seston dynamics based on a simplified biogeochemical model; and (3) a scenario analysis of phytoplankton dynamics based on an ecosystem model. These complementary approaches suggest (1) new leases can affect existing culture both through direct connectivity and through bay-scale effects driven by the overall increase in mussel biomass, and (2) a net reduction of phytoplankton within the bounds of its natural variation in the area.
Resumo:
Macroscopic marine algae, typically known as macroalgae or seaweeds, form an important living resource of the oceans, as primary producers. People have collected seaweeds for food, both for humans and animals for millennia. They also have been a source of nutrient rich fertilizers, as well as a source of gelling agents known as phycocolloids. More recently macroalgae are playing significant roles in medicine and biotechnology. Although Biotechnology and in particular marine biotechnology may have different meanings for different people, under the present context we will consider a broader definition. Marine biotechnology consists on the use of biological knowledge and/or the application of biological techniques on marine organisms, for the development of products in some way beneficial for humans. Seaweed aquaculture is, therefore a biotechnology activity. It is also one that can allow for further development of the industry. Today, seaweed cultivation techniques are standardized, routine and economical. Several factors, including understanding the environmental regulation of life histories and asexual propagation of thalli, are responsible for the success of large-scale seaweed cultivation. Presently, seaweed aquaculture represents approximately 23% of the world’s aquaculture production, including fish, crustaceans and other animals. A promising approach for the development of seaweed aquaculture, and aquaculture in general, is the integrated multi-trophic aquaculture (IMTA). In these systems, fed-aquaculture is combined with extractive organisms like bivalves and/or algae. The constraints and advantages of IMTA will be discussed. In particular, land based IMTA systems allow for much greater environmental and input controls. Traceability, security of supply, high-quality standards and safety should be the future of seaweed aquaculture and contribute for the development of marine biotechnology.
Resumo:
Estuaries and other transitional waters are complex ecosystems critically important as nursery and shelter areas for organisms. Also, humans depend on estuaries for multiple socio-economical activities such as urbanism, tourism, heavy industry, (taking advantage of shipping), fisheries and aquaculture, the development of which led to strong historical pressures, with emphasis on pollution. The degradation of estuarine environmental quality implies ecologic, economic and social prejudice, hence the importance of evaluating environmental quality through the identification of stressors and impacts. The Sado Estuary (SW Portugal) holds the characteristics of industrialized estuaries, which results in multiple adverse impacts. Still, it has recently been considered moderately contaminated. In fact, many studies were conducted in the past few years, albeit scattered due to the absence of true biomonitoring programmes. As such, there is a need to integrate the information, in order to obtain a holistic perspective of the area able to assist management and decision-making. As such, a geographical information system (GIS) was created based on sediment contamination and biomarker data collected from a decade-long time-series of publications. Four impacted and a reference areas were identified, characterized by distinct sediment contamination patterns related to different hot spots and diffuse sources of toxicants. The potential risk of sediment-bound toxicants was determined by contrasting the levels of pollutants with available sediment quality guidelines, followed by their integration through the Sediment Quality guideline Quotient (SQG-Q). The SQG-Q estimates per toxicant or class was then subjected to georreferencing and statistical analyses between the five distinct areas and seasons. Biomarker responses were integrated through the Biomarkers Consistency Indice and georreferenced as well through GIS. Overall, in spite of the multiple biological traits surveyed, the biomarker data (from several organisms) are accordant with sediment contamination. The most impacted areas were the shipyard area and adjacent industrial belt, followed by urban and agricultural grounds. It is evident that the estuary, although globally moderately impacted, is very heterogeneous and affected by a cocktail of contaminants, especially metals and polycyclic aromatic hydrocarbon. Although elements (like copper, zinc and even arsenic) may originate from the geology of the hydrographic basin of the Sado River, the majority of the remaining contaminants results from human activities. The present work revealed that the estuary should be divided into distinct biogeographic units, in order to implement effective measures to safeguard environmental quality.
Resumo:
The objective of this work was to estimate the genetic variability level and distribution in Brazilian broodstocks of marine shrimp (Litopenaeus vannamei). Nine of the country's largest hatcheries were evaluated using codominant and highly polymorphic microsatellite markers. The results obtained from genotyping of ten microsatellite loci are indicative of genetic variability that is compatible with that found in wild populations of L. vannamei in Mexico and Central America. A possible explanation is the highly diversified and relatively recent origin of the available broodstocks. Bayesian analysis detected a signal for five founding populations. The distribution of genetic distances partially reflects geographical location, and this information will be useful for the creation of new broodstocks. Therefore, L. vannamei genetic variability among nine of the largest national hatcheries can be considered high.
Resumo:
Phosphate (Pi) is one among the most important essential residues in maintenance and inheritance of life, with far diverse physiological role as structural, functional and energy transduction. Phosphate accumulation in wastewaters containing run off of fertilizers and industrial discharges is a global problem that results in algal blooms in bays, lakes and waterways. Currently available methods for removing phosphates from wastewater are based primarily on polyP accumulation by the activated sludge bacteria. PolyP plays a critical role in several environmental and biotechnological problems. Possible relation of interaction between polyP accumulation phenomenon, the low biomass, low Pi uptake, and varying results obtained in response to the impact of sodium chloride, pH, temperature, various inorganic salts and additional carbon sources studied, are all intriguing observations in the present investigation. The results of the present study have evidenced very clearly the scope for potential strains of bacteria from both sea water and marine sediments which could be exploited both for Pi removal in wastewater released by industries and intensive aquaculture practices in to the aquatic environment as well as to harness the potential strains for industrial production of polyP which was wide range of applications.
Resumo:
Aquaculture farms, particularly in Southeast Asia are facing severe crisis due to increasing incidences of White Spot Syndrome Virus (WSSV). Actinomycetes have provided many important bioactive compounds of high prophylactic and therapeutic value and are continually being screened for new compounds. In this communication, the results of a study made to determine the effectiveness of marine actinomycetes against the white spot disease in penaeid shrimps are presented. Twenty-five isolates of actinomycetes were tested for their ability to reduce infection due to WSSV among cultured shrimps. When these actinomycetes were made available as feed additives to the post-larvae of the black tiger shrimp Penaeus monodon for two weeks and challenged with WSSV, the post challenge survival showed variations from 11 to 83%. However, six isolates have shown to be the most potential candidates for further study.
Resumo:
The study revealed the potential of marine yeasts as a source of single cell protein and immunostimulant for prawns. Prawns fed with the selected marine yeasts were showing more growth compared to the control feed and commercial feed. Yeasts being rich with proteins, vitamins and carbohydrates serve as a growth promoter for prawns as being evidenced in this study. The better performance of marine yeasts, D. hansenii S8 and S100 and C. tropicalis S186 compared to S. cerevisiae S36 as a feed supplement is worth investigating. Besides being a rich nutritional source, yeasts act as immunostimulants by virtue of its high carbohydrate (Beta, 1-3 glucan) and RNA content. Beta, 1-3 glucan, a cell wall component of yeasts /fungi is the most commonly used immunostimulant in aquaculture. The present study shows that even the whole cell yeast could serve as a good immunostimulant when supplied through diet. Extraction of Beta-1,3 glucan results in the removal of nutrients like proteins, vitamins etc. from the cell biomass.Utilization of the yeast biomass as such in the diet would help perform a dual role as nutritional component and immunostimulant for aquaculture applications.
Resumo:
A rare horizontal gene transfer event could be traced. The movement of the SXT element among the Vibrionaceae could be followed. This element was first reported from Vibrio cholerae and in this study the same could be confirmed in Vibrio alginolyticus. Events such as these, which take place with respect to other virulence/virulence associated genes, may lead to the emergence of pathogenic strains from hitherto non-pathogens or may even give rise to new pathogens. The results generated in the course of this study paves way for further characterization and detailed study, especially with respect to those strains which showed gastric fluid accumulation in the in vivo suckling mouse assay. Antibiotic resistance pattern shown by a sample population of Vibrios can be used for deciding treatment options. There is enough scope for further research on these topics towards generating basic knowledge, which can be of immense significance in human and aquaculture health.
Resumo:
The present study revealed the importance of marine actinomycetes as a potent source of bio active secondary metabolites. The selected isolates were capable of protecting Peaneus monodon against WSSV infection. They also proved to be inhibitory to vibrios and is a rich pool of hydrolytic enzymes. Their capacity to proliferate in saline environments and their property of non-pathogenicity to prawns makes them good candidates to be applied as probionts in penaeid shrimp aquaculture. They also enhanced the immune status of shrimps challenged with WSSV and act as a good source of antioxidants. Exploitation of the potential for the prophylactic and therapeutic measures in aquatic animal health management would be highly rewarding. This work is a preliminary study targeting marine actinomycetes as a source of antiviral compounds and as probionts in Penaeus monodon culture systems. More work is needed to understand the nature and mode of action of the bioactive compound, the various aspects of immune and antioxidant responses under challenge and when exposed to pro active treatments, and the dose and frequency of application of such compounds under rearing conditions.