868 resultados para manufacturing automation
Resumo:
Recently, Brownian networks have emerged as an effective stochastic model to approximate multiclass queueing networks with dynamic scheduling capability, under conditions of balanced heavy loading. This paper is a tutorial introduction to dynamic scheduling in manufacturing systems using Brownian networks. The article starts with motivational examples. It then provides a review of relevant weak convergence concepts, followed by a description of the limiting behaviour of queueing systems under heavy traffic. The Brownian approximation procedure is discussed in detail and generic case studies are provided to illustrate the procedure and demonstrate its effectiveness. This paper places emphasis only on the results and aspires to provide the reader with an up-to-date understanding of dynamic scheduling based on Brownian approximations.
Resumo:
We present a framework for performance evaluation of manufacturing systems subject to failure and repair. In particular, we determine the mean and variance of accumulated production over a specified time frame and show the usefulness of these results in system design and in evaluating operational policies for manufacturing systems. We extend this analysis for lead time as well. A detailed performability study is carried out for the generic model of a manufacturing system with centralized material handling. Several numerical results are presented, and the relevance of performability analysis in resolving system design issues is highlighted. Specific problems addressed include computing the distribution of total production over a shift period, determining the shift length necessary to deliver a given production target with a desired probability, and obtaining the distribution of Manufacturing Lead Time, all in the face of potential subsystem failures.
Resumo:
Mathematical modelling plays a vital role in the design, planning and operation of flexible manufacturing systems (FMSs). In this paper, attention is focused on stochastic modelling of FMSs using Markov chains, queueing networks, and stochastic Petri nets. We bring out the role of these modelling tools in FMS performance evaluation through several illustrative examples and provide a critical comparative evaluation. We also include a discussion on the modelling of deadlocks which constitute an important source of performance degradation in fully automated FMSs.
Resumo:
The next generation manufacturing technologies will draw on new developments in geometric modelling. Based on a comprehensive analysis of the desiderata of next generation geometric modellers, we present a critical review of the major modelling paradigms, namely, CSG, B-Rep, non-manifold, and voxel models. We present arguments to support the view that voxel-based modellers have attributes that make it the representation scheme of choice in meeting the emerging requirements of geometric modelling.
Resumo:
In this paper, we propose an approach, using Coloured Petri Nets (CPN) for modelling flexible manufacturing systems. We illustrate our methodology for a Flexible Manufacturing Cell (FMC) with three machines and three robots. We also consider the analysis of the FMC for deadlocks using the invariant analysis of CPNs.
Resumo:
Flexible Manufacturing Systems (FMS), widely considered as the manufacturing technology of the future, are gaining increasing importance due to the immense advantages they provide in terms of cost, quality and productivity over the conventional manufacturing. An FMS is a complex interconnection of capital intensive resources and high levels of system performance is very crucial for survival in a competing environment.Discrete event simulation is one of the most popular methods for performance evaluation of FMS during planning, design and operation phases. Indeed fast simulators are suggested for selection of optimal strategies for flow control (which part type to enter and at what instant), AGV scheduling (which vehicle to carry which part), routing (which machine to process the part) and part selection (which part for processing next). In this paper we develop a C-net based model for an FMS and use the same for distributed discrete event simulation. We illustrate using examples the efficacy of destributed discrete event simulation for the performance evaluation of FMSs.
Resumo:
Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes. RFID has long been used to gather a history or trace of part movements, but the use of it as an integral part of the control process is yet to be fully exploited. Such use places stringent demands on the quality of the sensor data and the method used to interpret that data. in particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects with the use of RFID. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes. Copyright © 2005 IFAC.
Resumo:
This paper presents an integrated design and costing method for large stiffened panels for the purpose of investigating the influence and interaction of lay-up technology and production rate on manufacturing cost. A series of wing cover panels (≈586kg, 19·9m2) have been sized with realistic requirements considering manual and automated lay-up routes. The integrated method has enabled the quantification of component unit cost sensitivity to changes in annual production rate and employed equipment maximum deposition rate. Moreover the results demonstrate the interconnected relationship between lay-up process and panel design, and unit cost. The optimum unit cost solution when using automated lay-up is a combination of the minimum deposition rate and minimum number of lay-up machines to meet the required production rate. However, the location of the optimum unit cost, at the boundaries between the number of lay-up machines required, can make unit cost very sensitive to small changes in component design, production rate, and equipment maximum deposition rate. - See more at: http://aerosociety.com/News/Publications/Aero-Journal/Online/1941/Modelling-layup-automation-and-production-rate-interaction-on-the-cost-of-large-stiffened-panel-components#sthash.0fLuu9iG.dpuf
Resumo:
Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.
Resumo:
In the semiconductor manufacturing environment it is very important to understand which factors have the most impact on process outcomes and to control them accordingly. This is usually achieved through design of experiments at process start-up and long term observation of production. As such it relies heavily on the expertise of the process engineer. In this work, we present an automatic approach to extracting useful insights about production processes and equipment based on state-of-the-art Machine Learning techniques. The main goal of this activity is to provide tools to process engineers to accelerate the learning-by-observation phase of process analysis. Using a Metal Deposition process as an example, we highlight various ways in which the extracted information can be employed.
Resumo:
Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.
Resumo:
Nowadays, the realization of the Virtual Factory (VF) is the strategic goal of many manufacturing enterprises for the coming years. The industrial scenario is characterized by the dynamics of innovations increment and the product life cycle became shorter. Furthermore products and the corresponding manufacturing processes get more and more complex. Therefore, companies need new methods for the planning of manufacturing systems.
To date, the efforts have focused on the creation of an integrated environment to design and manage the manufacturing process of a new product. The future goal is to integrate Virtual Reality (VR) tools into the Product Lifecycle Management of the manufacturing industries.
In order to realize this goal the authors have conducted a study to perform VF simulation steps for a supplier of Industrial Automation Systems and have provided a structured approach focusing on interaction between simulation software and VR hardware tools in order to simulate both robotic and
manual work cells.
The first results of the study in progress have been carried out in the VR Laboratory of the Competence Regional Centre for the qualification of the Transportation Systems that has been founded by Campania Region.
Resumo:
States that control is of the essence in cybernetics. Summarizes the dynamic equations for a flexible one-link manipulator moving in the horizontal plane. Employs the finite element method, based on elementary beam theory, during the process of formulation. Develops and instruments a one-link flexible manipulator in order to control its vibration modes. Uses a simple second-order vibration model which permits vibrations on the rod to be estimated using the hub angle. The validation of the dynamic model and the structural analysis of the flexible manipulator is reached using proper infrared cameras and active light sources for determining actual positions of objects in space. Shows that the performance of the control is satisfactory, even under perturbation action.