998 resultados para mangrove plant
Resumo:
由于生长环境的特殊性,红树林及其内生真菌的代谢产物在化学类型和生物活性方面都具有多样性,因此对其代谢产物的研究引起了人们越来越多的关注。本论文以菌丝体生物量、代谢产物量等指标及薄层色谱分析、高效液相色谱分析、抗菌活性测试等筛选手段对来源于我国海南红树植物的九株内生真菌在四种不同液体培养基上的静置发酵产物进行了综合评价,并从中选择了来源于半红树植物黄槿(Hibiscus tiliaceus)的内生真菌G2——赤散囊菌(Eurotium rubrum)进行了30 L规模发酵(采用PDB培养基)和次生代谢产物的研究,对分离得到的部分化合物进行了初步的生物活性评价。此外,本论文还对海南真红树植物红海榄(Rhizophora stylosa Griff.)的化学成分进行了研究,并对分离得到的部分化合物进行了二苯代苦味酰自由基(DPPH)清除活性的评价。 采用常规的硅胶柱层析、Sephadex LH-20柱层析、反相硅胶柱层析、制备薄层层析(pTLC)、重结晶等分离手段,分离纯化得到单体化合物。综合运用现代波谱技术 (IR、UV、MS、1D-NMR 和 2D-NMR) 以及与标准品或文献比对鉴定单体化合物的结构。从G2菌丝体和发酵液的合并提取物中鉴定了45个化合物的结构,其中13个为新化合物,结构类型包括6个苯甲醛类化合物(ER1*~ER6*)、4个蒽醌类化合物(ER15*~ ER18*)和3个含吲哚的二酮哌嗪生物碱类化合物(ER27*~ER29*)。 对以上分离鉴定的部分单体化合物进行了DPPH自由基清除活性、拒食杀虫活性、抗细菌活性以及体外细胞毒活性的初步评价。新化合物ER15*和三个已知化合物ER20、ER39和ER40都表现很强的DPPH自由基清除活性。化合物ER15*还表现较好的拒食杀虫活性,而化合物ER5*和ER18*不但没有杀虫活性,反而能促进幼虫的生长。所测试的化合物只有ER15*和ER18*表现出微弱的抗金黄色葡萄球菌活性。所测试的化合物对A-549、HL-60和P-388细胞株均未表现出有意义的体外细胞毒活性。 从红海榄枝条的提取物中分离鉴定了29个化合物,其中2个为新化合物,包括1个三萜酯(RS1*)和1个黄烷醇类化合物(RS12*);另有1个三萜酯(RS5)和1个黄烷醇类化合物(RS11)作为新的天然产物被分离鉴定。 对从红海榄提取物乙酸乙酯相和正丁醇相分离得到的部分单体化合物进行了DPPH自由基清除活性的研究。黄烷醇类化合物RS16和RS17显示最强的活性。另外,实验结果说明黄烷醇类化合物的DPPH自由基清除活性与其分子中所含的羟基数目有一定关系,而且若芳香环上有多个邻位酚羟基,则该化合物的活性将增强。本论文实验结果为海南红海榄植物资源的利用提供了化学成分及抗氧化活性方面的科学依据。
Resumo:
White spot syndrome virus (WSSV), the most contagious pathogen of cultured shrimp, causes mass mortality, leading to huge economic loss to the shrimp industry. The lack of effective therapeutic or prophylactic measures has aggravated the situation, necessitating the development of antiviral agents. With this objective, the antiviral activity in the aqueous extract of a mangrove plant Ceriops tagal in Penaeus monodon was evaluated. The Ceriops tagal aqueous extract (CTAE) was non-toxic to shrimps at 50 mg/ml when injected intramuscularly at a dosage of 10 lL/animal (0.5 mg/animal) and showed a protective effect against WSSV at 30 mg/ml when mixed with WSSV suspension at a 1:1 ratio. When the extract was administered along with the diet and the animals were challenged orally, there was a dose-dependent increase in survival, culminating in 100 % survival at a concentration of 500 mg/kg body weight/day. Neither hypertrophied nuclei nor the viral envelope protein VP28 could be demonstrated in surviving shrimps using histology and indirect immunofluorescence histochemistry (IIFH), respectively. To elucidate the mode of action, the temporal expression of WSSV genes and shrimp immune genes, including antimicrobial peptides, was attempted. None of the viral genes were found to be expressed in shrimps that were fed with the extract and challenged or in those that were administered CTAE-exposed WSSV. The overall results suggest that the aqueous extract from C. tagal can protect P. monodon from white spot syndrome virus infection.
Resumo:
Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10(3) in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.
Resumo:
Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10³ in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.
Resumo:
Herbicides, particularly diuron, were correlated with severe and widespread dieback of the dominant mangrove, Avicennia marina (Forsk.) Vieth. var. eucalyptifolia (Val.) N.C. Duke (Avicenniaceae), its reduced canopy condition, and declines in seedling health within three neighbouring estuaries in the Mackay region of NE Australia. This unusual species-specific dieback, first observed in the early 1990s, had gotten notably worse by 2002 to affect > 30km(2) of mangroves in at least five adjacent estuaries in the region. Over the past century, agricultural production has responded well to the demands of increasing population with improvements in farm efficiency assisted by significant increases in the use of agricultural chemicals. However, with regular and episodic river flow events, these chemicals have sometimes found their way into estuarine and nearshore water and sediments where their effects on marine habitats have been largely unquantified. Investigations over the last three years in the Mackay region provide compelling evidence of diuron, and possibly other agricultural herbicides, as the most likely cause of the severe and widespread mangrove dieback. The likely consequences of such dieback included declines in coastal water quality with increased turbidity, nutrients and sediment deposition, as well as further dispersal of the toxic chemicals. The implications of such findings are immense since they describe not only the serious deterioration of protected and beneficial mangrove habitat but also the potential for significant direct and indirect effects on other highly-valued estuarine and marine habitats in the region, including seagrass beds and coral reefs of the Great Barrier Reef lagoon. This article reviews all key findings and observations to date and describes the essential correlative and causative evidence. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.
Resumo:
We studied the role of photochemical and microbial processes in contributing to the transformation of dissolved organic matter (DOM) derived from various plants that dominate the Florida Everglades. Plant-derived DOM leachate samples were exposed to photochemical and microbial degradation and the optical, chemical, and molecular weight characteristics measured over time. Optical parameters such as the synchronous fluorescence intensity between 270 and 290 nm (Fnpeak I), a strong indicator of protein and/or polyphenol content, decreased exponentially in all plant leachate samples, with microbial decay constants ranging from 21.0 d21 for seagrass to 20.11 d21 for mangrove (half-life [t1/2] 5 0.7–6.3 d). Similar decreases in polyphenol content and dissolved organic carbon (DOC) concentration also occurred but were generally an order of magnitude lower or did not change significantly over time. The initial molecular weight composition was reflected in the rate of Fnpeak I decay and suggests that plantderived DOM with a large proportion of high molecular weight structures, such as seagrass derived DOM, contain high concentrations of easily microbially degradable proteinaceous components. For samples exposed to extended simulated solar radiation, polyphenol and Fnpeak I photochemical decay constants were on average 20.7 d21 (t1/2 1.0 d). Our data suggest that polyphenol structures of plant-derived DOM are particularly sensitive to photolysis, whereas high molecular weight protein-like structures are degraded primarily through physical–chemical and microbial processes. Furthermore, microbial and physical processes initiated the formation of recalcitrant, highly colored high molecular weight polymeric structures in mangrove-derived DOM. Thus, partial, biogeochemical transformation of plant-derived DOM from coastal areas is rapid and is likely to influence carbon and nutrient cycling, especially in areas dominated by seagrass and mangrove forests.
Resumo:
The article presents a two-part guideline in mangrove reforestation. The first part is zonation, which is the process of determining what species are particularly suited to plant in a particular site. While, plantation establishment is the second part, it includes guides in the identification of species, selection of planting site, preparation of the planting sites, seed collection, handling and transporting of seeds, and planting.
Resumo:
Highlights are given of a mangove community structure survey conducted in the coastal barangays of Carles, Panay Island, Philippines, in April 2003. The survey aimed to qualitatively describe the species composition, community structure and plant biomass of mangrove forests. The 13 sample sites showed a total of 18 mangrove species, dominated by Avicennia marina. The findings, which indicate a modest yet declining diversity of mangroves in Carles, reinforce the need for their protection and management. This is due not only to their importance as habitats for fish and shellfish juveniles that replenish stocks for capture fisheries and aquaculture, but also due to the fact that Carles is one of the few remaining areas in Panay where rare mangrove species can still be found.
Resumo:
Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.
Resumo:
Mangrove swamps are found in estuaries along the coastal plains of tropical regions and have be subjected to heavy occupation and use pressure due to their privileged locations and abundance of biological resources. The present work evaluated the ecological characteristics and solid wastes accumulated in eight areas along the Santos - Sao Vicente Estuary Complex. The superficially deposited residues at each sampling site were collected and subsequently washed, drained, counted, weighed and separated into classes according to their composition and predominant use. The predominant litter type in terms of density was plastic (62.81%) and, by weight, wood (55.53%). The greatest deposition of residues was associated with areas that were less inclined and that had low plant density levels, indicating that the presence of obstacles was not critical for retaining floating residues in mangrove areas. The presence of the most frequently encountered types of solid waste residues could be explained by local activities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)