44 resultados para malware


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BlackEnergy malware targeting critical infrastructures has a long history. It evolved over time from a simple DDoS platform to a quite sophisticated plug-in based malware. The plug-in architecture has a persistent malware core with easily installable attack specific modules for DDoS, spamming, info-stealing, remote access, boot-sector formatting etc. BlackEnergy has been involved in several high profile cyber physical attacks including the recent Ukraine power grid attack in December 2015. This paper investigates the evolution of BlackEnergy and its cyber attack capabilities. It presents a basic cyber attack model used by BlackEnergy for targeting industrial control systems. In particular, the paper analyzes cyber threats of BlackEnergy for synchrophasor based systems which are used for real-time control and monitoring functionalities in smart grid. Several BlackEnergy based attack scenarios have been investigated by exploiting the vulnerabilities in two widely used synchrophasor communication standards: (i) IEEE C37.118 and (ii) IEC 61850-90-5. Specifically, the paper addresses reconnaissance, DDoS, man-in-the-middle and replay/reflection attacks on IEEE C37.118 and IEC 61850-90-5. Further, the paper also investigates protection strategies for detection and prevention of BlackEnergy based cyber physical attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malware detection is a growing problem particularly on the Android mobile platform due to its increasing popularity and accessibility to numerous third party app markets. This has also been made worse by the increasingly sophisticated detection avoidance techniques employed by emerging malware families. This calls for more effective techniques for detection and classification of Android malware. Hence, in this paper we present an n-opcode analysis based approach that utilizes machine learning to classify and categorize Android malware. This approach enables automated feature discovery that eliminates the need for applying expert or domain knowledge to define the needed features. Our experiments on 2520 samples that were performed using up to 10-gram opcode features showed that an f-measure of 98% is achievable using this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malware is a foundational component of cyber crime that enables an attacker to modify the normal operation of a computer or access sensitive, digital information. Despite the extensive research performed to identify such programs, existing schemes fail to detect evasive malware, an increasingly popular class of malware that can alter its behavior at run-time, making it difficult to detect using today’s state of the art malware analysis systems. In this thesis, we present DVasion, a comprehensive strategy that exposes such evasive behavior through a multi-execution technique. DVasion successfully detects behavior that would have been missed by traditional, single-execution approaches, while addressing the limitations of previously proposed multi-execution systems. We demonstrate the accuracy of our system through strong parallels with existing work on evasive malware, as well as uncover the hidden behavior within 167 of 1,000 samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major problems that prevents the spread of elections with the possibility of remote voting over electronic networks, also called Internet Voting, is the use of unreliable client platforms, such as the voter's computer and the Internet infrastructure connecting it to the election server. A computer connected to the Internet is exposed to viruses, worms, Trojans, spyware, malware and other threats that can compromise the election's integrity. For instance, it is possible to write a virus that changes the voter's vote to a predetermined vote on election's day. Another possible attack is the creation of a fake election web site where the voter uses a malicious vote program on the web site that manipulates the voter's vote (phishing/pharming attack). Such attacks may not disturb the election protocol, therefore can remain undetected in the eyes of the election auditors. We propose the use of Code Voting to overcome insecurity of the client platform. Code Voting consists in creating a secure communication channel to communicate the voter's vote between the voter and a trusted component attached to the voter's computer. Consequently, no one controlling the voter's computer can change the his/her's vote. The trusted component can then process the vote according to a cryptographic voting protocol to enable cryptographic verification at the server's side.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação de Mestre António da Silva Vieira.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Botnets are a group of computers infected with a specific sub-set of a malware family and controlled by one individual, called botmaster. This kind of networks are used not only, but also for virtual extorsion, spam campaigns and identity theft. They implement different types of evasion techniques that make it harder for one to group and detect botnet traffic. This thesis introduces one methodology, called CONDENSER, that outputs clusters through a self-organizing map and that identify domain names generated by an unknown pseudo-random seed that is known by the botnet herder(s). Aditionally DNS Crawler is proposed, this system saves historic DNS data for fast-flux and double fastflux detection, and is used to identify live C&Cs IPs used by real botnets. A program, called CHEWER, was developed to automate the calculation of the SVM parameters and features that better perform against the available domain names associated with DGAs. CONDENSER and DNS Crawler were developed with scalability in mind so the detection of fast-flux and double fast-flux networks become faster. We used a SVM for the DGA classififer, selecting a total of 11 attributes and achieving a Precision of 77,9% and a F-Measure of 83,2%. The feature selection method identified the 3 most significant attributes of the total set of attributes. For clustering, a Self-Organizing Map was used on a total of 81 attributes. The conclusions of this thesis were accepted in Botconf through a submited article. Botconf is known conferênce for research, mitigation and discovery of botnets tailled for the industry, where is presented current work and research. This conference is known for having security and anti-virus companies, law enforcement agencies and researchers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the INFO2009 coursework; an interactive resource set to teach students about the Computer Misuse Act, encompassing an explanation of the law and multiple-choice questions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Created for INFO2009 coursework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Content related to the second INFO2009 assignment for Group 6's radio interview on data security and the DPA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coursework 2, Security Sock-puppet Show

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An E-Learning Gateway for the latest news and information relating to Computer Crime for INFO2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El siguiente trabajo es una recopilación de información sobre la tecnología digital y su proceso de evolución hasta nuestros días. Pretende mostrar como la innovación ha sido un motor de cambio en este sector, ideando un nuevo modelo de negocio donde su cadena de valor para llegar al cliente es más rápida, flexible y rentable. El mundo digital abarca múltiples conocimientos y ha revolucionado la sociedad de conocimiento a través de las tecnologías de comunicación, tanto en la academia, el entretenimiento y todas las ciencias. En Colombia la industria digital ha tenido un gran impulso a través del ministerio de tecnología y comunicación y empresas que han motivado e impulsado a emprendedores a desarrollar aplicaciones e incursionar en este mercado que ofrece grandes ventajas competitivas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since Sharir and Pnueli, algorithms for context-sensitivity have been defined in terms of 'valid' paths in an interprocedural flow graph. The definition of valid paths requires atomic call and ret statements, and encapsulated procedures. Thus, the resulting algorithms are not directly applicable when behavior similar to call and ret instructions may be realized using non-atomic statements, or when procedures do not have rigid boundaries, such as with programs in low level languages like assembly or RTL. We present a framework for context-sensitive analysis that requires neither atomic call and ret instructions, nor encapsulated procedures. The framework presented decouples the transfer of control semantics and the context manipulation semantics of statements. A new definition of context-sensitivity, called stack contexts, is developed. A stack context, which is defined using trace semantics, is more general than Sharir and Pnueli's interprocedural path based calling-context. An abstract interpretation based framework is developed to reason about stack-contexts and to derive analogues of calling-context based algorithms using stack-context. The framework presented is suitable for deriving algorithms for analyzing binary programs, such as malware, that employ obfuscations with the deliberate intent of defeating automated analysis. The framework is used to create a context-sensitive version of Venable et al.'s algorithm for analyzing x86 binaries without requiring that a binary conforms to a standard compilation model for maintaining procedures, calls, and returns. Experimental results show that a context-sensitive analysis using stack-context performs just as well for programs where the use of Sharir and Pnueli's calling-context produces correct approximations. However, if those programs are transformed to use call obfuscations, a contextsensitive analysis using stack-context still provides the same, correct results and without any additional overhead. © Springer Science+Business Media, LLC 2011.