152 resultados para maltose
Resumo:
High-affinity uptake into bacterial cells is mediated by a large class of periplasmic binding protein-dependent transport systems, members of the ATP-binding cassette superfamily. In the maltose transport system of Escherichia coli, the periplasmic maltose-binding protein binds its substrate maltose with high affinity and, in addition, stimulates the ATPase activity of the membrane-associated transporter when maltose is present. Vanadate inhibits maltose transport by trapping ADP in one of the two nucleotide-binding sites of the membrane transporter immediately after ATP hydrolysis, consistent with its ability to mimic the transition state of the γ-phosphate of ATP during hydrolysis. Here we report that the maltose-binding protein becomes tightly associated with the membrane transporter in the presence of vanadate and simultaneously loses its high affinity for maltose. These results suggest a general model explaining how ATP hydrolysis is coupled to substrate transport in which a binding protein stimulates the ATPase activity of its cognate transporter by stabilizing the transition state.
Resumo:
We have demonstrated that it is possible to radically change the specificity of maltose binding protein by converting it into a zinc sensor using a rational design approach. In this new molecular sensor, zinc binding is transduced into a readily detected fluorescence signal by use of an engineered conformational coupling mechanism linking ligand binding to reporter group response. An iterative progressive design strategy led to the construction of variants with increased zinc affinity by combining binding sites, optimizing the primary coordination sphere, and exploiting conformational equilibria. Intermediates in the design series show that the adaptive process involves both introduction and optimization of new functions and removal of adverse vestigial interactions. The latter demonstrates the importance of the rational design approach in uncovering cryptic phenomena in protein function, which cannot be revealed by the study of naturally evolved systems.
Resumo:
Thesis (doctoral)--Kgl. Bayer. Julius-Maximilians-Universitat Wurburg, 1891.
Resumo:
Thesis (doctoral)--Koniglich Julius-Maximilians- Universitat Wurzburg, 1889.
Resumo:
The nucleotide sequence of DNA complementary to rice ragged stunt oryzavirus (RRSV) genome segment 8 (S8) of an isolate from Thailand was determined. RRSV S8 is 1 914 bp in size and contains a single large open reading frame (ORF) spanning nucleotides 23 to 1 810 which is capable of encoding a protein of M(r) 67 348. The N-terminal amino acid sequence of a ~43K virion polypeptide matched to that inferred for an internal region of the S8 coding sequence. These data suggest that the 43K protein is encoded by S8 and is derived by a proteolytic cleavage. Predicted polypeptide sizes from this possible cleavage of S8 protein are 26K and 42K. Polyclonal antibodies raised against a maltose binding protein (MBP)-S8 fusion polypeptide (expressed in Escherichia coli) recognised four RRSV particle associated polypeptides of M(r) 67K, 46K, 43K and 26K and all except the 26K polypeptide were also highly immunoreactive to polyclonal antibodies raised against purified RRSV particles. Cleavage of the MBP-S8 fusion polypeptide with protease Factor X produced the expected 40K MBP and two polypeptides of apparent M(r) 46K and 26K. Antibodies to purified RRSV particles reacted strongly with the intact fusion protein and the 46K cleavage product but weakly to the 26K product. Furthermore, in vitro transcription and translation of the S8 coding region revealed a post-translational self cleavage of the 67K polypeptide to 46K and 26K products. These data indicate that S8 encodes a structural polypeptide, the majority of which is auto- catalytically cleaved to 26K and 46K proteins. The data also suggest that the 26K protein is the self cleaving protease and that the 46K product is further processed or undergoes stable conformational changes to a ~43K major capsid protein.
Resumo:
Background: Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype–genotype link between the displayed protein and the encoding gene. Results: A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50–DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein–plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype–genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions: A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
Background Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype-genotype link between the displayed protein and the encoding gene. Results A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50-DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein-plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype-genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
This paper describes a phenotypic and genotypic investigation of the taxonomy of [Haemophilus] paragallinarum, Pasteurella gallinarum, Pasteurella avium and Pasteurella volantium, a major subcluster within the avian 16S rRNA cluster 18 of the family Pasteurellaceae. An extended phenotypic characterization was performed of the type strain of [Haemophilus] paragallinarum, which is NAD-dependent, and eight NAD-independent strains of [Haemophilus] paragallinarum. Complete 16S rRNA gene sequences were obtained for one NAD-independent and four NAD-dependent [Haemophilus] paragallinarum strains. These five sequences along with existing 16S rRNA gene sequences for 11 other taxa within avian 16S rRNA cluster 18 as well as seven other taxa from the Pasteurellaceae were subjected to phylogenetic analysis. The analysis demonstrated that [Haemophilus] paragallinarum, Pasteurella gallinarum, Pasteurella avium and Pasteurella volantium formed a monophyletic group with a minimum of 96·8% sequence similarity. This group can also be separated by phenotypic testing from all other recognized and named taxa within the Pasteurellaceae. As both genotypic and phenotypic testing support the separate and distinct nature of this subcluster, the transfer is proposed of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium to a new genus Avibacterium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov. The type strains are NCTC 1118T (Avibacterium gallinarum), NCTC 11296T (Avibacterium paragallinarum), NCTC 11297T (Avibacterium avium) and NCTC 3438T (Avibacterium volantium). Key characteristics that separate these four species are catalase activity (absent only in Avibacterium paragallinarum) and production of acid from galactose (negative only in Avibacterium paragallinarum), maltose (negative only in Avibacterium avium) and mannitol (negative in Avibacterium gallinarum and Avibacterium avium).
Resumo:
The complete sequence of a P4 type VP4 gene from a G2 serotype human rotavirus, IS2, isolated in India has been determined. Although the IS2 VP4 is highly homologous to the other P4 type alleles, it contained acidic amino acid substitutions at several positions that make it acidic among the P4 type alleles that are basic. Moreover, comparative sequence analysis revealed unusual polymorphism in members of the P4 type at amino acid position 393 which is highly conserved in members of other VP4 types. To date, expression of complete VP4 inE. coli has not been achieved. In this study we present successful expression inE. coli of the complete VP4 as well as VP8* and VP5* cleavage subunits in soluble form as fusion proteins of the maltose-binding protein (MBP) and their purification by single-step affinity chromatography. The hemagglutinating activity exhibited by the recombinant protein was specifically inhibited by the antiserum raised against it. Availability of pure VP4 proteins should facilitate development of polyclonal and monoclonal antibodies (MAbs) for P serotyping of rotaviruses.
Resumo:
Oxyglycals, derived from lactose and maltose, were expanded to trisaccharides through a ring expansion method. Trisaccharides with 6-7-5 and 6-7-6 ring sizes were prepared through the ring expansion method, with high diastereoselectivities, in each step of their synthesis. The NOE and ROESY NMR spectroscopies were used to assess the dipolar Couplings within the trisaccharide. A computational study was undertaken, from which low energy conformations, as well as, dihedral angles that define the glycosidic linkages were identified.
Resumo:
1H NMR spin-lattice relaxation time (T1) measurements have been carried out with various sugars, viz. methyl alpha-D-glucopyranoside (alpha-MeGluP), methyl beta-D-lucopyranoside (beta-MeGluP), methyl alpha--annopyranoside (alpha-MeManP), maltose (4-O-alpha-D-glucopyranosyl--glucose), nigerose (3-O-alpha-D-glucopyranosyl-D-glucose), p-nitrophenyl alpha-maltoside (PNP-alpha-maltoside) and p-nitrophenyl beta-maltoside (PNP-beta-maltoside) to determine the distances of sugar protons from Mn2+ in concanavalin A (Con A). With a rotational correlation time of 1.58 x 10(-10) s determined, distances were calculated using Solomon-Bloembergen equation. The data obtained indicated differences in disposition of different groups in the binding site of Con A. An average value of about 10 A was obtained for the distances of sugar protons from Mn2+ in Con A. In the case of mono and disaccharides, the non-reducing end sugar unit was found to be closer to Mn2+ than the reducing end one.
Resumo:
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel beta-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive chi(1) value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1 degrees C in T-m. All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (Delta Delta G(0) = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. Proteins 2011; 79: 244-260. (C) 2010 Wiley-Liss, Inc.
Resumo:
Six disaccharide amphiphiles were synthesized and their hydrogel-forming behavior was extensively studied. These amphiphiles were based on maltose and lactose. Since the gels formed from some of these systems showed the ability to "trap" water molecules upon gelation, these gels were described as "hydrogels". When these gels were heated to similar to 70 degrees C, the samples turned into clear, isotropic fluids, and upon gradual cooling, the hydrogels could be reproduced. Thus these systems were also "thermoreversible". The low molecular mass (MW 565) of the gelators compared to that of a typical polymeric gelator forming substance implies pronounced aggregation of the disaccharide amphiphiles into larger microstructures during gelation. To discern the aggregate textures and morphologies, the specimen hydrogel samples were examined by high-resolution scanning electron microscopy (SEM). A possible reason for the exceptionally high water gelating capacities (>6000 molecules of water per gelator molecule) exhibited by these N-alkyl disaccharide amphiphiles is the presence of large interlamellar spaces into which the water molecules get entrapped due to surface tension. In contrast to their single-chain counterparts, the double-chain lactosyl and maltosylamine amphiphiles upon solubilization in EtOH-H2O afforded hydrogels with reduced mechanical strengths. Interestingly, the corresponding microstructures were found to be quite different from the corresponding hydrogels of their single-chain counterparts. Rheological studies provided further insights into the behavior of these hydrogels. Varying the chain length of the alcohol cosolvent could modulate the gelation capacities, melting temperatures, and the mechanical properties of these hydrogels. To explain the possible reasons of gelation, the results of molecular modeling and energy minimization studies were also included.
Resumo:
Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methylene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-alpha-D-glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 degrees C and 70 degrees C. The studies showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring disaccharides. alpha-Anomer showed faster hydrolysis than the beta-anomer and the presence of axial hydroxyl group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disaccharide analogues were nearly similar to that of naturally-occurring disaccharides. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.