98 resultados para magnetohydrodynamics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetohydrodynamics (MHD) flow of a conducting, homogeneous incompressible Rivlin-Ericksen fluid of second grade contained between two infinite, parallel, insulated disks rotating with the same angular velocity about two noncoincident axes, under the application of a uniform transverse magnetic field, is investigated. This model represents the MHD flow of the fluid in the instrument called an orthogonal rheometer, except for the fact that in the rheometer the rotating plates are necessarily finite. An exact solution of the governing equations of motion is presented. The force components in the x and y directions on the disks are calculated. The effects of magnetic field and the viscoelastic parameter on the forces are discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using singular surface theory and ray theory the speeds of propagation of fast and slow waves, propagating into a medium in arbitrary motion, have been obtained in relativistic magnetohydrodynamics. The differential equation governing the growth of these waves along the rays has been derived and the solution has been presented in integral form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accretion disk around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. Naturally, the question arises whether such a system is chaotic (deterministic) or stochastic (random) which might be related to the associated transport properties whose origin is still not confirmed. Earlier, the black hole system GRS 1915+105 was shown to be low-dimensional chaos in certain temporal classes. However, so far such nonlinear phenomena have not been studied fairly well for neutron stars which are unique for their magnetosphere and kHz quasi-periodic oscillation (QPO). On the other hand, it was argued that the QPO is a result of nonlinear magnetohydrodynamic effects in accretion disks. If a neutron star exhibits chaotic signature, then what is the chaotic/correlation dimension? We analyze RXTE/PCA data of neutron stars Sco X-1 and Cyg X-2, along with the black hole Cyg X-1 and the unknown source Cyg X-3, and show that while Sco X-1 and Cyg X-2 are low dimensional chaotic systems, Cyg X-1 and Cyg X-3 are stochastic sources. Based on our analysis, we argue that Cyg X-3 may be a black hole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global dynamo simulations solving the equations of magnetohydrodynamics (MHD) have been a tool of astrophysicists who try to understand the magnetism of the Sun for several decades now. During recent years many fundamental issues in dynamo theory have been studied in detail by means of local numerical simulations that simplify the problem and allow the study of physical effects in isolation. Global simulations, however, continue to suffer from the age-old problem of too low spatial resolution, leading to much lower Reynolds numbers and scale separation than in the Sun. Reproducing the internal rotation of the Sun, which plays a crucual role in the dynamo process, has also turned out to be a very difficult problem. In the present paper the current status of global dynamo simulations of the Sun is reviewed. Emphasis is put on efforts to understand how the large-scale magnetic fields, i.e. whose length scale is greater than the scale of turbulence, are generated in the Sun. Some lessons from mean-field theory and local simulations are reviewed and their possible implications to the global models are discussed. Possible remedies to some of the current issues of the solar simulations are put forward.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On a characteristic surface Omega of a hyperbolic system of first-order equations in multi-dimensions (x, t), there exits a compatibility condition which is in the form of a transport equation along a bicharacteristic on Omega. This result can be interpreted also as a transport equation along rays of the wavefront Omega(t) in x-space associated with Omega. For a system of quasi-linear equations, the ray equations (which has two distinct parts) and the transport equation form a coupled system of underdetermined equations. As an example of this bicharacteristic formulation, we consider two-dimensional unsteady flow of an ideal magnetohydrodynamics gas with a plane aligned magnetic field. For any mode of propagation in this two-dimensional flow, there are three ray equations: two for the spatial coordinates x and y and one for the ray diffraction. In spite of little longer calculations, the final four equations (three ray equations and one transport equation) for the fast magneto-acoustic wave are simple and elegant and cannot be derived in these simple forms by use of a computer program like REDUCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generalize the method of A. M. Polyakov, Phys. Rev. E 52, 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension Eur. Phys. J.B 9, 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Karman-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown how suitably scaled, order-m moments, D-m(+/-), of the Elsasser vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P-M = 1. These vorticity fields are defined by omega(+/-) = curl z(+/-) = omega +/- j, where z(+/-) are Elsasser variables, and where omega and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence Gibbon et al., Nonlinearity 27, 2605 (2014)]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q(+/-) that characterize the inertial range power-law dependencies of the z(+/-) energy spectra, epsilon(+/-)(k), are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case P-M not equal 1 and (b) the relation between D-m(+/-) and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper points out that viscosity can induce mode splitting in a uniform infinite cylinder of an incompressible fluid with self-gravitation, and that the potential energy criterion cannot be appropriate to all normal modes obtained, i.e., there will be stable modes with negative potential energy (<0). Therefore the condition >0 is not necessary, although sufficient, for the stability of a mode in an incompressible static fluid or magnetohydrodynamics (MHD) system, which is a correction of both Hare's [Philos. Mag. 8, 1305 (1959)] and Chandrasekhar's [Hydrodynamic and Hydromagnetic Stability (Oxford U.P., Oxford, 1961), p. 604] stability criterion for a mode. These results can also be extended to compressible systems with a polytropic exponent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.

In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: