998 resultados para magnetic particles


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on an experimental study of the structures presented by urethane/urea elastomeric films without and with ferromagnetic nanoparticles incorporated. The study is made by using the X-ray diffraction, nuclear magnetic resonance (NMR), optical, atomic and magnetic force (MFM) microscopy techniques, and mechanical assays. The structure of the elastomeric matrix is characterized by a distance of 0.46 nm between neighboring molecular segments, almost independent on the stretching applied. The shear casting performed in order to obtain the elastomeric films tends to orient the molecules parallel to the flow direction thus introducing anisotropy in the molecular network which is reflected on the values obtained for the orientational order parameter and its increase for the stretched films. In the case of nanoparticles-doped samples, the structure remains nearly unchanged although the local order parameter is clearly larger for the undoped films. NMR experiments evidence modifications in the molecular network local ordering. Micrometer size clusters were observed by MFM for even small concentration of magnetic particles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micrometer-sized magnetic particles hosted on network material were successfully prepared by a simple chemical process (ion exchange followed by co-precipitation) from commercial styrene-divinylbenzene copolymers. Energy dispersive X-ray spectroscopy (EDS) coupled to scanning electron microscopy (SEM) allowed the observation of submicron particles. All the produced spherical beads have presented metallic particles (NiFe2O4, CuFe2O4, CoFe2O4, or MnFe2O4), either as isolated particles or agglomerates, located on their external and internal (within pores) The thermal stability of the composites, evaluated by thermogravimetric techniques, were found to be dependent on the amount of ferrite particles incorporated into them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Loss of magnetic medium solids from dense medium circuits is a substantial contributor to operating cost. Much of this loss is by way of wet drum magnetic separator effluent. A model of the separator would be useful for process design, optimisation and control. A review of the literature established that although various rules of thumb exist, largely based on empirical or anecdotal evidence, there is no model of magnetics recovery in a wet drum magnetic separator which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was therefore carried out using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 mm diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in the work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. Observations carried out as an adjunct to this work, as well as magnetic theory, suggests that the capture of magnetic particles in the wet drum magnetic separator is by a flocculation process. Such a process should be defined by a flocculation rate and a flocculation time; the latter being defined by the volumetric flowrate and the volume within the separation zone. A model based on this concept and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to provide a satisfactory fit to the data over three orders of magnitude of magnetics loss. (C) 2003 Elsevier Science BY. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the use of in situ implant formation that incorporates superparamagnetic iron oxide nanoparticles (SPIONs) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. We developed injectable formulations that form gels entrapping magnetic particles into a tumor. We used SPIONs embedded in silica microparticles to favor syringeability and incorporated the highest proportion possible to allow large heating capacities. Hydrogel, single-solvent organogel and cosolvent (low-toxicity hydrophilic solvent) organogel formulations were injected into human cancer tumors xenografted in mice. The thermoreversible hydrogels (poloxamer, chitosan), which accommodated 20% w/v of the magnetic microparticles, proved to be inadequate. Alginate hydrogels, however, incorporated 10% w/v of the magnetic microparticles, and the external gelation led to strong implants localizing to the tumor periphery, whereas internal gelation failed in situ. The organogel formulations, which consisted of precipitating polymers dissolved in single organic solvents, displayed various microstructures. A 8% poly(ethylene-vinyl alcohol) in DMSO containing 40% w/v of magnetic microparticles formed the most suitable implants in terms of tumor casting and heat delivery. Importantly, it is of great clinical interest to develop cosolvent formulations with up to 20% w/v of magnetic microparticles that show reduced toxicity and centered tumor implantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fine magnetic particles (sizeffi100A ˚ ) belonging to the series ZnxFe1 xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Results of the study of Argiudolls in two localities (Zarate and Veronica) of the Pampean plain, Argentina, are presented in this contribution. This is a typical area covered by loess. The magnetic studies carried out allowed to determine the presence of detrital magnetite and titanomagnetite, as well as maghemite, pedogenic goethite and superparamagnetic particles (SP). In Veronica soils, a depletion of ferromagnetic minerals is recorded The dominant process in these soils has been the reductive loss of detrital magnetite and titanomagnetite. This is associated with a greater degree of evolution of the soil, which is determined by the concentration and type of detected clays. The higher clay concentration in these soils facilitated reducing conditions and a greater loss of detrital magnetic particles. The loss is reinforced under poor drainage conditions. In the poorly drained soil of Zarate, a concentration of magnetic particles is observed in the Bt horizon, which is associated with an illuviation process. The well drained soil of the same locality shows neoformation of SP particles. These particles would have an ephemeral life until a new wet period in the annual cycle occurs. Although some characteristics of the magnetic signal appear reinforced by the conditions of drainage, this aspect does not seem to be too significant, at least in the Pampean region with low topographic gradients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe 3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g- 1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanoparticles were prepared from a NdFeB-based alloy using the hydrogen decrepitation process together with high-energy ball milling and tested as heating agent for magnetic hyperthermia. In the milling time range evaluated (up to 10 h), the magnetic moment per mass at H = 1.59 MA m(-1) is superior than 70 A m(2) kg(-1); however, the intrinsic coercivity might be inferior than 20 kA m(-1). The material presents both ferromagnetic and superparamagnetic particles constituted by a mixture of phases due to the incomplete disproportionation reaction of Nd2Fe14BHx during milling. Solutions prepared with deionized water and magnetic particles exposed to an AC magnetic field (H-max similar to 3.7 kA m(-1) and f = 228 kHz) exhibited 26 K <= Delta T-max <= 44 K with a maximum estimated specific absorption rate (SAR) of 225 W kg(-1). For the pure magnetic material milled for the longest period of time (10 h), the SAR was estimated as similar to 2500 W kg(-1). In vitro tests indicated that the powders have acceptable cytotoxicity over a wide range of concentration (0.1-100 mu g ml(-1)) due to the coating applied during milling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Loaded microspheres with a silicon (IV) phthalocyanine derivative (NzPC) acting as a photosensitizer were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(ecaprolactone) (PCL) polymers using the emulsification solvent evaporation method (EE). The aim of our study was to prepare two systems of these biodegradable PHBHV/PCL microspheres. The first one containing only photosensitizer previously incorporated in the PHBHV and poly(ecaprolactone) (PCL) microspheres and the second one with the post magnetization of the DDS with magnetic nanoparticles. Magnetic fluid is successfully used for controlled incorporation of nanosized magnetic particles within the micron-sized template. This is the first time that we could get a successful pos incorporation of nanosized magnetic particles in a previously-prepared polymeric template. This procedure opens a great number of possibilities of post-functionalization of polymeric micro or nanoparticles with different bioactive materials. The NzPC release profile of the systems is ideal for PDT, the zeta potential and the size particle are stable upon aging in time. In vitro studies were evaluated using gingival fibroblastic cell line. The dark citotoxicity, the phototoxicity and the AC magnetic field assays of the as-prepared nanomagnetic composite were evaluated and the cellular viability analyzed by the classical test of MU.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The structural and magnetic properties of a Fe-based alloy before and after sintering have been analyzed. X ray diffraction measurements confirm the deformation of the magnetic particles in the compacted samples. After sintering, hysteresis energy dissipation, remanence and intrinsic coercivity differ by less than 10% as porosity changes from 15 to 7%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heavy (magnetic & non-magnetic) minerals are found concentrated by natural processes in many fluvial, estuarine, coastal and shelf environments with a potential to form economic placer deposits. Understanding the processes of heavy mineral transport and enrichment is prerequisite to interpret sediment magnetic properties in terms of hydro- and sediment dynamics. In this study, we combine rock magnetic and sedimentological laboratory measurements with numerical 3D discrete element models to investigate differential grain entrainment and transport rates of magnetic minerals in a range of coastal environments (riverbed, mouth, estuary, beach and near-shore). We analyzed grain-size distributions of representative bulk samples and their magnetic mineral fractions to relate grain-size modes to respective transport modes (traction, saltation, suspension). Rock magnetic measurements showed that distribution shapes, population sizes and grain-size offsets of bulk and magnetic mineral fractions hold information on the transport conditions and enrichment process in each depositional environment. A downstream decrease in magnetite grain size and an increase in magnetite concentration was observed from riverine source to marine sink environments. Lower flow velocities permit differential settling of light and heavy mineral grains creating heavy mineral enriched zones in estuary settings, while lighter minerals are washed out further into the sea. Numerical model results showed that higher heavy mineral concentrations in the bed increased the erosion rate and enhancing heavy mineral enrichment. In beach environments where sediments contained light and heavy mineral grains of equivalent grain sizes, the bed was found to be more stable with negligible amount of erosion compared to other bed compositions. Heavy mineral transport rates calculated for four different bed compositions showed that increasing heavy mineral content in the bed decreased the transport rate. There is always a lag in transport between light and heavy minerals which increases with higher heavy mineral concentration in all tested bed compositions. The results of laboratory experiments were validated by numerical models and showed good agreement. We demonstrate that the presented approach bears the potential to investigate heavy mineral enrichment processes in a wide range of sedimentary settings.