989 resultados para machine theory
Resumo:
Using the link-link incidence matrix to represent a simple-jointed kinematic chain algebraic procedures have been developed to determine its structural characteristics such as the type of freedom of the chain, the number of distinct mechanisms and driving mechanisms that can be derived from the chain. A computer program incorporating these graph theory based procedures has been applied successfully for the structural analysis of several typical chains.
Resumo:
The paper presents simple graphical procedures for the position synthesis of plane linkage mechanisms with sliding inputs and output to generate functions of two independent variables. The procedures are based on point position reduction and permit synthesis of the linkage to satisfy up to five arbitrarily selected precision positions.
Resumo:
A graphical method is presented for synthesis of the general, seven-link, two-degree-of-freedom plane linkage to generate functions of two variables. The method is based on point position reduction and permits synthesis of the linkage to satisfy upto six arbitrarily selected precision positions.
Resumo:
A finite element formulation for the natural vibration analysis of tapered and pretwisted rotors has been presented. Numerical results for natural frequencies for various values of the geometric parameters and rotational speeds, have been computed for the case of rotors with and without pretwist. A Galerkin solution for the fundamental has also been worked out and has been used to provide a comparison for the finite element results. Charts for rapid estimation of the fundamental frequency parameter of tapered rotors, have been included.
Resumo:
Flexible objects such as a rope or snake move in a way such that their axial length remains almost constant. To simulate the motion of such an object, one strategy is to discretize the object into large number of small rigid links connected by joints. However, the resulting discretised system is highly redundant and the joint rotations for a desired Cartesian motion of any point on the object cannot be solved uniquely. In this paper, we revisit an algorithm, based on the classical tractrix curve, to resolve the redundancy in such hyper-redundant systems. For a desired motion of the `head' of a link, the `tail' is moved along a tractrix, and recursively all links of the discretised objects are moved along different tractrix curves. The algorithm is illustrated by simulations of a moving snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator. The simulations show that the tractrix based algorithm leads to a more `natural' motion since the motion is distributed uniformly along the entire object with the displacements diminishing from the `head' to the `tail'.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents simple graphical procedures for position synthesis of plane linkage mechanisms to generate functions of two independent variables. The procedures are based on point-position reduction and permit synthesis of the linkage to satisfy up to six arbitrarily selected precision positions.
Resumo:
The paper presents simple graphical procedures for the position synthesis of plane linkage mechanisms with sliding inputs and output to generate functions of two independent variables. The procedures are based on point position reduction and permit synthesis of the linkage to satisfy up to five arbitrarily selected precision positions.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The performance of a plate clutch in a two-inertia power transmission system is analysed assuming negligible compliance and using a piecewise linear function to represent the clutch torque characteristic. Expressions defining, for all linear segments of the clutch torque characteristic, dimensionless input and output velocities of the clutch and dimensionless slip period are presented. The use of these expressions in preparing design charts to aid analysis and design of the plate clutch is outlined.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
The paper presents a general method of structural synthesis which can be used to derive all possible simple- and multiple-jointed chains of positive, zero or negative degree-of-freedom. In this method all possible chains with N links and F degrees-of-freedom are derived by the transformation of the corresponding “binary chains” with N binary links and F degrees-of-freedom. The method is illustrated by applying to the case of chains with degrees-of-freedom 1,2,0 and −1.
Resumo:
This paper deals with the kinematics of pantograph masts. Pantograph masts have widespread use in space application as deployable structures. They are over constrained mechanisms with degree-of-freedom, evaluated by the Grübler–Kutzback formula, as less than one. In this paper, a numerical algorithm is used to evaluate the degree-of-freedom of pantograph masts by obtaining the null space of a constraint Jacobian matrix. In the process redundant joints in the masts are obtained. A method based on symbolic computation, to obtain the closed-form kinematics equations of triangular and box shaped pantograph masts, is presented. In the process, the various configurations such masts can attain during deployment, are obtained. The closed-form solution also helps in identifying the redundant joints in the masts. The symbolic computations involving the Jacobian matrix also leads to a method to evaluate the global degree-of-freedom for these masts.
A canonical formulation of the direct position kinematics problem for a general 6-6 stewart platform
Resumo:
This paper deals with the direct position kinematics problem of a general 6-6 Stewart platform, the complete solution of which is not reported in the literature until now and even establishing the number of possible solutions for the general case has remained an unsolved problem for a long period. Here a canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform is presented. The kinematic equations are expressed as a system of six quadratic and three linear equations in nine unknowns, which has a maximum of 64 solutions. Thus, it is established that the mechanism, in general, can have up to 64 closures. Further reduction of the system is shown arriving at a set of three quartic equations in three unknowns, the solution of which will yield the assembly configurations of the general Stewart platform with far less computational effort compared to earlier models.
Resumo:
The finite resolution of joint drives or sensors imparts a discrete nature to the joints of a manipulator. Because of this an arbitrary point in the workspace cannot be reached without error even in ideal mechanical environment. This paper investigates the effect of this discrete nature of the joints on the accuracy of performance of a manipulator and develops a method to select the joint states to reach a point with least error. It is shown that the configuration leading to least error cannot, in general, be found from configuration space, especially when there is large variation in the link lengths or joint resolutions or both. The anomaly becomes severe when the gross motion of the end-effector approaches the local resolution of the workspace. The paper also shows how to distinguish two workspaces which may be identical so far as the boundary points are concerned, taking the joint resolutions into account. Finally, the concepts have been extended to define continuous space global and local performance indices for general multi degree of freedom manipulators.