998 resultados para luminescent material
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O material Y2O3:Eu3+ vem sendo usado comercialmente como luminóforo vermelho desde da década de 1960, em uma grande variedade de aplicações devido ao seu elevado rendimento quântico (próximo de 100 %), elevada pureza de cor e boa estabilidade. Portanto, este trabalho propõe um novo método de síntese baseado nos complexos benzenotricarboxilatos (BTC) de terras raras trivalentes (RE3+) dopados com íons Eu3+. O objetivo principal é produzir materiais luminescente RE2O3:Eu3+ a temperatura mais baixa (500 °C) e em escala nanométrica. Os complexos precursores [RE(BTC):Eu3+] e [RE(TLA)·n(H2O):Eu3+], onde RE3+: Y, Gd e Lu; BTC: ácido trimésico (TMA) e ácido trimelítico (TLA) foram calcinados em diferentes temperaturas de 500 a 1000 °C, a fim de obter os materiais luminescentes RE2O3:Eu3+. Os complexos foram caracterizados por análise elementar de carbono e hidrogênio, analise térmica (TG), espectroscopia de absorção no infravermelho (FTIR), difração de raios-X - método do pó (XPD) e microscopia eletrônica de varredura (SEM). Todos os complexos são cristalinos e termo estáveis até 460 °C. Dados de fosforescência dos complexos de Y, Gd e Lu mostram que o nível T1 do aníon BTC3- tem energia acima do nível emissor 5D0 do íon Eu3+, indicando que os ligantes podem atuar como sensibilizadores de energia intramolecular. O estudo das propriedades fotoluminescentes dos complexos dopados foi baseado nos espectros de excitação e emissão e curvas de decaimento de luminescência. Ademais, foram determinados os parâmetros de intensidades experimentais (Ωλ), tempos de vida (τ), taxas de decaimentos radiativo (Arad) e não-radiativo (Anrad). Os materiais luminescentes RE2O3:Eu3+ foram sintetizados de forma bem sucedida por meio do método benzenotricarboxilatos calcinados a 500, 600, 700, 800, 900 e 1000 °C, apresentando alta homogeneidade química e controle de tamanho de cristalito. Os nanomateriais foram caracterizados pelas técnicas de FTIR, XPD SEM e TEM revelando a obtenção dos materiais C-RE2O3:Eu3+ mesmo a 500 °C. Os dados de XPD dos materiais confirmaram um aumento do tamanho dos cristalitos de 5 até 52 nm (equação de Scherrer) de em função da temperatura de calcinação de 500 a 1000 °C, respectivamente, corroborados pelas técnicas de SEM e TEM. Os espectros de emissão de RE2O3:Eu3+ mostram uma banda larga atribuída a transição interconfiguracional de transferência de carga ligante-metal (LMCT) em 260 nm, i.e. O2-(2p)→Eu3+(4f6). Além disso, foram observadas linhas finas de absorção devido as transições intraconfiguracionais 4f do íon európio (7F0,1LJ; J: 0, 1, 2, 3 e 4), como esperado. As propriedades fotoluminescentes dos luminóforos foram baseadas nos espectros (excitação e emissão) e curvas de decaimento luminescente. Os parâmetros de intensidade experimental, tempos de vida, assim como as taxas de decaimentos radiativos e não radiativos foram calculados. As propriedades fotônicas dos nanomateriais são consistentes com o sítio de baixa simetria C2 ocupado pelo íon Eu3+ no C-RE2O3:Eu3+, produzindo emissão vermelha dominada pela transição hipersensível 5D0F2 do íon Eu3+ no sitio C2, ao invés do sítio centrossimétrico S6. Além disso, os nanomateriais Y2O3:Eu3+ exibem características espectroscópicas semelhantes e elevados valores de eficiência quântica (η~91 %), compatível com os luminóforos comerciais disponíveis no mercado. Este novo método pode ser utilizado para o desenvolvimento de novos nanomateriais contendo íons terras raras, assim como outros íons metálicos.
Resumo:
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.
Resumo:
Two-component super-hydrogelation triggered by the acid-base interaction of a L-histidine appended pyrenyl derivative (PyHis) and phthalic acid (PA) was reported. The use of isomeric isophthalic or terephthalic acid or other comparable acids in place of PA does not lead to salt formation and therefore hydrogelation is not observed. Excimer formation of the pyrenyl unit has not been detected although the PyHis : PA = 1: 1 system undergoes extensive self-assembly in aqueous solution. The synergistic effect of intermolecular H-bonding forces, pi-pi stacking, electrostatic interactions, etc. is found to be responsible for robust hydrogel formation. Development of chiral supramotecular assemblies has been verified through circular dichroism spectroscopy. Morphological investigations involving the PyHis : PA = 1: 1 system show vesicular nano-structures with a definite bilayer width at relatively low concentrations. The latter fuses to construct coiled-coil left-handed helical fibers upon increase in the concentrations of the gelators. The intertwining of the resultant helical fibers eventually results in hydrogel formation. The probable bilayer packing in the self-assembled structures has been probed using X-ray diffraction (XRD) studies and lanthanide sensitization, which suggests that the polar imidazolium hydrogen phthalate unit of the gelator forms the head group and faces the hydrophilic water environment while the hydrophobic pyrenyl units sit inside the hydrophobic core of the bilayer. The hydrogel exhibits multi-stimuli responsiveness including thixotropic behavior. In addition, shape-persistent as well as rapid self-healing behaviour of the hydrogel was established. Furthermore load-bearing characteristics of the hydrogel have also been demonstrated.
Resumo:
In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that not contain expensive or toxic elements, or do not need a mercury vapor plasma source. In this paper, BPO4 and Li+-doped BPO4 powder samples were prepared by the Pechini-type sol-gel (PSG) process. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and X-ray photoelectron spectra (XPS), respectively. It was found that PSG -derived Li+-doped BPO4 annealed at 960 degrees C exhibited bright bluish-white emission centered at 416 nm. The luminescence decay curves analysis indicates that each sample has two kinds of lifetimes (5.9 ns and 0.529 ms) and two types of kinetic decay behaviors which can be fitted into a single-exponential function and a double-exponential function, respectively.
Resumo:
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.
Resumo:
In this paper, we report on the growth and characterization of quantum dot−quantum well nanostructures with photoluminescence (PL) that is tunable over the visible range. The material exhibits a PL efficiency as high as 60% and is prepared by reacting ZnS nanocrystals in turn with precursors for CdSe and ZnS in an attempt to form a simple “ZnS/CdSe/ZnS quantum-well structure”. Through the use of synchrotron radiation-based photoelectron spectroscopy in conjunction with detailed overall compositional analysis and correlation with the size of the final composite nanostructure, the internal structure of the composite nanocrystals is shown to consist of a graded alloy core whose composition gradually changes from ZnS at the very center to CdSe at the onset of a CdSe layer. The outer shell is ZnS with a sharp interface, probably reflecting the relative thermodynamic stabilities of the parent binary phases. These contrasting aspects of the internal structure are discussed in terms of the various reactivities and are shown to be crucial for understanding the optical properties of such complex heterostructured nanomaterials.
Resumo:
We present a simple route for synthesis of Y2O3 for both photoluminescent (PL) and thermoluminescent (TL) applications. We show that by simply switching the fuel from ethylene di-amine tetracetic acid (EDTA) to its disodium derivative (Na-2-EDTA), we obtain a better photoluminescent material. On the other hand, use of EDTA aids in formation of Y2O3 which is a better thermoluminescent material. In both cases pure cubic nano-Y2O3 is obtained. For both the material systems, structural characterization, photoluminescence, thermoluminescence, and absorbance spectra are reported and analyzed. Use of EDTA results in nano Y2O3 with crystallite size similar to 10 nm. Crystallinity improves, and crystallite size is larger (similar to 30 nm) when Na-2-EDTA is used. TL response of Y2O3 nanophosphors prepared by both fuels is examined using UV radiation. Samples prepared with EDTA show well resolved glow curve at 140 degrees C, while samples prepared with Na-2-EDTA shows a glow curve at 155 degrees C. Effect of UV exposure time on TL characteristics is investigated. The TL kinetic parameters are also calculated using glow curve shape method. Results indicate that the TL behavior of both the samples follow a second order kinetic model. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A new technique based on luminescent molecular sensors is utilized in these series of experiments for measurement of temperatures in material removal processes. 2-Dimensional machining of metals at low speeds and surface grinding configurations are used as the model experimental systems to understand the efficacy of this experimental technique. The experiments were conducted with a series of luminescent sensors and binder combinations for the temperature measurement. The luminescence of the sensor was measured through a charge-coupled device imaging camera, and intensive calibration exercises were performed on these sensors. Excellent agreement in the temperature fields measured through this new experimental approach and traditional infrared thermography is seen here. This technique offers the unique capability of allowing measurement of temperatures in the presence of a lubricant, akin to manufacturing conditions in situ. Extension of the technique to measure the temperature field at the tool-chip contact is described.
Resumo:
In the current communication, we report the synthesis, spectroscopic, crystal structure, DFT and photophysical studies of a new nicotinonitrile derivative, viz. 2-methoxy-6-(4-methoxy-phenyl)-4-p-tolyl-nicotinonitrile (2) as a potential blue light emitting material. The compound 2 was synthesized in good yield via a simple route. The acquired spectral and elemental analysis data were in consistent with the chemical structure of 2. The single crystal study further confirms its three dimensional structure, molecular shape, and nature of short contacts. Its DFT calculations reveal that compound 2 possesses a non-planar structure and its theoretical IR spectral data are found to be in accordance with experimental values. In addition, its UV visible and fluorescence spectral measurements prove that the compound exhibits good absorption and fluorescence properties. Also, it shows positive solvatochromic effect when the solvent polarity was varied from non-polar to polar. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
With the progress of modern material science and successful commercialisations of organic-electronics, the field of organic luminescent materials has gained much attention in recent years. For a long time, the concepts and knowledge of photoluminescence (i.e. fluorescence and phosphorescence) were restricted to the solution phase as the exceptions of fluorescence quenching in condensed state were yet to be discovered. However, in the last few decades, researchers around the globe have come up with a number of promising strategies and concepts to systematically design solid-state emissive organic materials. In particular, the manipulations of ordered solid state structures and intermolecular strong and weak interactions provide a basis for understanding structure-property relationship and serve as an important tool for the design of newer, better and more efficient luminescent materials. In this short review, recent developments in this field will be presented.
Resumo:
In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.
Resumo:
Recent advancements of material science and its applications have been immensely influenced by the modern development of organic luminescent materials. Among all organic luminogens, boron containing compounds have already established their stature as one of the indispensable classes of luminescent dyes. Boron, in its various forms e. g. triarylboranes, borate dyes and boron clusters, has attracted considerable attention owing to its several unique and excellent photophysical features. In very recent times, beyond the realms of solution-state studies, luminescent boron-containing compounds have emerged as a large and versatile class of stimuli responsive materials. Based on several fundamental concepts of chemistry, researchers have come up with an admirable variety of boron-containing materials with AIE (aggregation-induced emission), mechano-responsive luminescence, thermoresponsive-luminescence as well as a number of purely organic phosphorescent materials and other standalone examples. The unique chemical as well as physical properties of boron-containing compounds are largely responsible for the development of such materials. In this review these new findings are brought together.