32 resultados para luciferases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform DNA distribution in tumors is a prerequisite step for high transfection efficiency in solid tumors. To improve the transfection efficiency of electrically assisted gene delivery to solid tumors in vivo, we explored how tumor histological properties affected transfection efficiency. In four different tumor types (B16F1, EAT, SA-1 and LPB), proteoglycan and collagen content was morphometrically analyzed, and cell size and cell density were determined in paraffin-embedded tumor sections under a transmission microscope. To demonstrate the influence of the histological properties of solid tumors on electrically assisted gene delivery, the correlation between histological properties and transfection efficiency with regard to the time interval between DNA injection and electroporation was determined. Our data demonstrate that soft tumors with larger spherical cells, low proteoglycan and collagen content, and low cell density are more effectively transfected (B16F1 and EAT) than rigid tumors with high proteoglycan and collagen content, small spindle-shaped cells and high cell density (LPB and SA-1). Furthermore, an optimal time interval for increased transfection exists only in soft tumors, this being in the range of 5-15 min. Therefore, knowledge about the histology of tumors is important in planning electrogene therapy with respect to the time interval between DNA injection and electroporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文通过5’-RACE和3’-RACE方法克隆了西双版纳地区的卵黄萤Luciola ovalis和端黑萤Luciola terminalis两种荧光素酶基因。两个荧光素酶基因被连接到pET-15b载体上并在BL21(DE3)菌株中表达。L. ovalis荧光素酶基因的开放阅读框有1635个碱基,编码一个544个氨基酸的蛋白。L. terminalis荧光素酶基因有一个1647bp的开放阅读框,编码一个548个氨基酸的蛋白。它们的氨基酸序列和北美萤火虫(Photinus pyralis)的氨基酸序列分别有65.3%和65.9%的相似性,而彼此之间又有73.5%的相似性。两种在大肠杆菌中表达的荧光素酶均有很高的活性,它们的最大发光波长分别是566 nm和563 nm。同时表达的四种荧光素酶(L. ovalis、L. terminalis、Hotaria parvula和Pyrocoelia miyako)在不同pH下活性变化很大,四种荧光素酶在pH 6.5-7.5之间有比较高的活性,其中L. ovalis和P. miyako两种荧光素酶在pH 7.0时活性最高,而另两种在pH 7.5时活性最高。当pH大于8.0时,这四种荧光素酶的活性都散失很快,可见它们对pH变化非常敏感。序列分析和结构模拟发现,荧光素酶活性位点周围有六个非常保守的结构域,这六个保守区域包含了大多数在催化发光反应中与底物荧光素和ATP结合的氨基酸。L. terminalis萤火虫荧光素酶的三级结构与L. cruciata荧光素酶晶体结构非常相似,而L. ovalis荧光素酶的三级结构在AMP结合位点附近有两个偏离的环。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioluminescence is the production of light by living organisms as a result of a number of enzyme catalysed reactions caused by enzymes termed luciferases. The lux genes responsible for the emission of light can be cloned from one bioluminescent microorganism into one that is not bioluminescent. The light emitted can be monitored and quantified and will provide information on the metabolic activity, quantity and location of cells in a particular environment, in real-time. The primary aim of this thesis was to investigate and identify several food industry related applications of lux-tagged microorganisms. The first aim was to monitor a lux-tagged Cronobacter sakazakii in reconstituted infant milk formula, in realtime. The second aim was to investigate a bioluminescent-based early warning system for starter culture disruption by bacteriophages and antibiotic residues. The third of this thesis was to examine the use of a bioluminescent-based assay to test the activity of bioengineered Nisin derivatives M21V and S29A against foodborne pathogens in laboratory media and selected foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15-20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le virus de l’immunodéficience humaine de type 1 (VIH-1) est responsable du syndrome de l’immunodéficience acquise (SIDA). Il faut identifier de nouvelles cibles pour le développement d’agents anti-VIH-1, car ce virus développe une résistance aux agents présentement utilisés. Notre but est d’approfondir la caractérisation de l’étape du changement de cadre de lecture ribosomique en -1 (déphasage -1) nécessaire à la production du précurseur des enzymes du VIH-1. Ce déphasage est programmé et effectué par une minorité de ribosomes lorsqu’ils traduisent la séquence dite glissante à un endroit spécifique de l’ARN messager (ARNm) pleine-longueur du VIH-1. L’efficacité de déphasage est contrôlée par le signal stimulateur de déphasage (SSF), une tige-boucle irrégulière située en aval de la séquence glissante. La structure du SSF est déroulée lors du passage d’un ribosome, mais elle peut se reformer ensuite. Nous avons montré que des variations de l’initiation de la traduction affectent l’efficacité de déphasage. Nous avons utilisé, dans des cellules Jurkat-T et HEK 293T, un rapporteur bicistronique où les gènes codant pour les luciférases de la Renilla (Rluc) et de la luciole (Fluc) sont séparés par la région de déphasage du VIH-1. La Rluc est produite par tous les ribosomes traduisant l’ARNm rapporteur alors que la Fluc est produite uniquement par les ribosomes effectuant un déphasage. L’initiation de ce rapporteur est coiffe-dépendante, comme pour la majorité des ARNm cellulaires. Nous avons examiné l’effet de trois inhibiteurs de l’initiation et montré que leur présence augmente l’efficacité de déphasage. Nous avons ensuite étudié l’effet de la tige-boucle TAR, qui est présente à l’extrémité 5’ de tous les ARNm du VIH-1. TAR empêche la liaison de la petite sous-unité du ribosome (40S) à l’ARNm et module aussi l’activité de la protéine kinase dépendante de l’ARN double-brin (PKR). L’activation de PKR inhibe l’initiation en phosphorylant le facteur d’initiation eucaryote 2 (eIF2) alors que l’inhibition de PKR a l’effet inverse. Nous avons étudié l’effet de TAR sur la traduction et le déphasage via son effet sur PKR en utilisant TAR en trans ou en cis, mais à une certaine distance de l’extrémité 5’ afin d’éviter l’interférence avec la liaison de la 40S. Nous avons observé qu’une faible concentration de TAR, qui active PKR, augmente l’efficacité de déphasage alors qu’une concentration élevée de TAR, qui inhibe PKR, diminue cette efficacité. Nous avons proposé un modèle où des variations de l’initiation affectent l’efficacité de déphasage en modifiant la distance entre les ribosomes parcourant l’ARNm et, donc, la probabilité qu’ils rencontrent un SSF structuré. Par la suite, nous avons déterminé l’effet de la région 5’ non traduite (UTR) de l’ARNm pleine-longueur du VIH-1 sur l’efficacité de déphasage. Cette 5’UTR contient plusieurs régions structurées, dont TAR à l’extrémité 5’, qui peut interférer avec l’initiation. Cet ARNm a une coiffe permettant une initiation coiffe-dépendante ainsi qu’un site d’entrée interne des ribosomes (IRES), permettant une initiation IRES-dépendante. Nous avons introduit cette 5’UTR, complète ou en partie, comme 5’UTR de notre ARNm rapporteur bicistronique. Nos résultats démontrent que cette 5’UTR complète inhibe l’initiation coiffe dépendante et augmente l’efficacité de déphasage et que ces effets sont dus à la présence de TAR suivie de la tige-boucle Poly(A). Nous avons aussi construit un rapporteur tricistronique où les ribosomes exprimant les luciférases utilisent obligatoirement l’IRES. Nous avons observé que cette initiation par l’IRES est faible et que l’efficacité de déphasage correspondante est également faible. Nous avons formulé une hypothèse pour expliquer cette situation. Nous avons également observé que lorsque les deux modes d’initiation sont disponibles, l’initiation coiffe dépendante est prédominante. Finalement, nous avons étudié l’effet de la protéine virale Tat sur l’initiation de la traduction et sur l’efficacité de déphasage. Nous avons montré qu’elle augmente l’initiation de la traduction et que son effet est plus prononcé lorsque TAR est située à l’extrémité 5’ des ARNm. Nous proposons un modèle expliquant les effets de Tat sur l’initiation de la traduction par l’inhibition de PKR ainsi que par des changements de l’expression de protéines cellulaires déroulant TAR. Ces résultats permettent de mieux comprendre les mécanismes régissant le déphasage du VIH-1, ce qui est essentiel pour le développement d’agents anti-déphasage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we describe a procedure for measuring the total light emission of the naturally bioluminescent tropical fungus Gerronema viridilucens and the optimization of culture conditions using multivariate factorial ANOVA. Cultures growing on an agar surface in 35 mm Petri dishes at 90% humidity show optimal bioluminescence emission at 25 degrees C in the presence of 1.0% sugar cane molasses, 0.10% yeast extract and pH 6.0 (nonbuffered). Temperature and pH are the most important factors for both mycelial growth and bioluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionary origin of beetle bioluminescence is enigmatic. Previously, weak luciferase activity was found in the non-bioluminescent larvae of Tenebrio molitor (Coleoptera: Tenebrionidae), but the detailed tissular origin and identity of the luciferase-like enzyme remained unknown. Using a closely related giant mealworm, Zophobas morio, here we show that the luciferase-like enzyme is located in the Malpighi tubules. cDNA cloning of this luciferase like enzyme, showed that it is a short AMP-ligase with weak luciferase activity which diverged long ago from beetle luciferases. The results indicate that the potential for bioluminescence in AMP-ligases is very ancient and provide a first reasonable protoluciferase model to investigate the origin and evolution of beetle luciferases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luciferyl adenylate, the key intermediate in beetle bioluminescence, is produced through adenylation of D-luciferin by beetle luciferases and also by mealworm luciferase-like enzymes which produce a weak red chemiluminescence. However, luciferyl adenylate is only weakly chemiluminescent in water at physiological pH and it is unclear how efficient bioluminescence evolved from its weak chemiluminescent properties. We found that bovine serum albumin (BSA) and neutral detergents enhance luciferyl adenylate chemiluminescence by three orders of magnitude, simulating the mealworm luciferase-like enzyme chemiluminescence properties. These results suggest that the beetle protoluciferase activity arose as an enhanced luciferyl adenylate chemiluminescence in the protein environment of the ancestral AMP-ligase. The predominance of luciferyl adenylate chemiluminescence in the red region under most conditions suggests that red luminescence is a more primitive condition that characterized the original stages of protobioluminescence, whereas yellow-green bioluminescence may have evolved later through the development of a more structured and hydrophobic active site. Copyright © 2006 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of this thesis is multicolour bioluminescence analysis and how it can provide new tools for drug discovery and development.The mechanism of color tuning in bioluminescent reactions is not fully understood yet but it is object of intense research and several hypothesis have been generated. In the past decade key residues of the active site of the enzyme or in the surface surrounding the active site have been identified as responsible of different color emission. Anyway since bioluminescence reaction is strictly dependent from the interaction between the enzyme and its substrate D-luciferin, modification of the substrate can lead to a different emission spectrum too. In the recent years firefly luciferase and other luciferases underwent mutagenesis in order to obtain mutants with different emission characteristics. Thanks to these new discoveries in the bioluminescence field multicolour luciferases can be nowadays employed in bioanalysis for assay developments and imaging purposes. The use of multicolor bioluminescent enzymes expanded the potential of a range of application in vitro and in vivo. Multiple analysis and more information can be obtained from the same analytical session saving cost and time. This thesis focuses on several application of multicolour bioluminescence for high-throughput screening and in vivo imaging. Multicolor luciferases can be employed as new tools for drug discovery and developments and some examples are provided in the different chapters. New red codon optimized luciferase have been demonstrated to be improved tools for bioluminescence imaging in small animal and the possibility to combine red and green luciferases for BLI has been achieved even if some aspects of the methodology remain challenging and need further improvement. In vivo Bioluminescence imaging has known a rapid progress since its first application no more than 15 years ago. It is becoming an indispensable tool in pharmacological research. At the same time the development of more sensitive and implemented microscopes and low-light imager for a better visualization and quantification of multicolor signals would boost the research and the discoveries in life sciences in general and in drug discovery and development in particular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.