979 resultados para location model
Resumo:
An administrative border might hinder the optimal allocation of a given set of resources by restricting the flow of goods, services, and people. In this paper we address the question: Do administrative borders lead to poor accessibility to public service such as hospitals? In answering the question, we have examined the case of Sweden and its regional borders. We have used detailed data on the Swedish road network, its hospitals, and its geo-coded population. We have assessed the population’s spatial accessibility to Swedish hospitals by computing the inhabitants’ distance to the nearest hospital. We have also elaborated several scenarios ranging from strongly confining regional borders to no confinements of borders and recomputed the accessibility. Our findings imply that administrative borders are only marginally worsening the accessibility.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.
Resumo:
This paper examines an industry-level model developed to analyze the impact of affiliates of multinational firms (MNFs) on the host country's revealed comparative advantages (RCAs), which predicts that the referred impact is given by both technology service and industry orientation. Based on Brazilian manufacturing industries during the import-substitution industrialization, panel data estimates show that MNFs negatively affected RCA, which is explained by location advantages in industries presenting comparative disadvantages, as reinforced by a location model. Two other important results are: (i) import protection had a stronger anti-export effect on multinationals than on national firms; (ii) MNFs were concentrated in industries with lower world-export growth.
Resumo:
The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^
Resumo:
No setor de energia elétrica, a área que se dedica ao estudo da inserção de novos parques geradores de energia no sistema é denominada planejamento da expansão da geração. Nesta área, as decisões de localização e instalação de novas usinas devem ser amplamente analisadas, a fim de se obter os diversos cenários proporcionados pelas alternativas geradas. Por uma série de fatores, o sistema de geração elétrico brasileiro, com predominância hidroelétrica, tende a ser gradualmente alterada pela inserção de usinas termoelétricas (UTEs). O problema de localização de UTEs envolve um grande número de variáveis através do qual deve ser possível analisar a importância e contribuição de cada uma. O objetivo geral deste trabalho é o desenvolvimento de um modelo de localização de usinas termoelétricas, aqui denominado SIGTE (Sistema de Informação Geográfica para Geração Termoelétrica), o qual integra as funcionalidades das ferramentas SIGs (Sistemas de Informação Geográfica) e dos métodos de decisão multicritério. A partir de uma visão global da área estudada, as componentes espaciais do problema (localização dos municípios, tipos de transporte, linhas de transmissão de diferentes tensões, áreas de preservação ambiental, etc.) podem ter uma representação mais próxima da realidade e critérios ambientais podem ser incluídos na análise. Além disso, o SIGTE permite a inserção de novas variáveis de decisão sem prejuízo da abordagem. O modelo desenvolvido foi aplicado para a realidade do Estado de São Paulo, mas deixando claro a viabilidade de uso do modelo para outro sistema ou região, com a devida atualização dos bancos de dados correspondentes. Este modelo é designado para auxiliar empreendedores que venham a ter interesse em construir uma usina ou órgãos governamentais que possuem a função de avaliar e deferir ou não a licença de instalação e operação de usinas.
Model for facilities or vendors location in a global scale considering several echelons in the Chain
Resumo:
The facilities location problem for companies with global operations is very complex and not well explored in the literature. This work proposes a MILP model that solves the problem through minimization of the total logistic cost. Main contributions of the model are the pioneer carrying cost calculation, the treatment given to the take-or-pay costs and to the international tax benefits such as drawback and added value taxes in Brazil. The model was successfully applied to a real case of a chemical industry with industrial plants and sales all over the world. The model application recommended a totally new sourcing model for the company.
Resumo:
In this paper we discuss the main privacy issues around mobile business models and we envision new solutions having privacy protection as a main value proposition. We construct a framework to help analyze the situation and assume that a third party is necessary to warrant transactions between mobile users and m-commerce providers. We then use the business model canvas to describe a generic business model pattern for privacy third party services. This pattern is then illustrated in two different variations of a privacy business model, which we call privacy broker and privacy management software. We conclude by giving examples for each business model and by suggesting further directions of investigation
Resumo:
Economists and policymakers have long been concerned with increasing the supply of health professionals in rural and remote areas. This work seeks to understand which factors influence physicians’ choice of practice location right after completing residency. Differently from previous papers, we analyse the Brazilian missalocation and assess the particularities of developing countries. We use a discrete choice model approach with a multinomial logit specification. Two rich databases are employed containing the location and wage of formally employed physicians as well as details from their post-graduation. Our main findings are that amenities matter, physicians have a strong tendency to remain in the region they completed residency and salaries are significant in the choice of urban, but not rural, communities. We conjecture this is due to attachments built during training and infrastructure concerns.
Resumo:
In many situations, it is difficult to evaluate the location of nests of ants, especially in tropical systems, or to determine which trail system corresponds with which nest, as in the case of high-density populations of leaf-cutting ants, Atta spp. Fragments of colored drinking straws coated with an attractant, generally vegetable oil and/or a starchy carbohydrate, are carried by ants and following removal of the attractant are deposited in middens, allowing determination of the origin of foraging workers.
Resumo:
Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
Mode of access: Internet.
Resumo:
An emergency is a deviation from a planned course of events that endangers people, properties, or the environment. It can be described as an unexpected event that causes economic damage, destruction, and human suffering. When a disaster happens, Emergency Managers are expected to have a response plan to most likely disaster scenarios. Unlike earthquakes and terrorist attacks, a hurricane response plan can be activated ahead of time, since a hurricane is predicted at least five days before it makes landfall. This research looked into the logistics aspects of the problem, in an attempt to develop a hurricane relief distribution network model. We addressed the problem of how to efficiently and effectively deliver basic relief goods to victims of a hurricane disaster. Specifically, where to preposition State Staging Areas (SSA), which Points of Distributions (PODs) to activate, and the allocation of commodities to each POD. Previous research has addressed several of these issues, but not with the incorporation of the random behavior of the hurricane's intensity and path. This research presents a stochastic meta-model that deals with the location of SSAs and the allocation of commodities. The novelty of the model is that it treats the strength and path of the hurricane as stochastic processes, and models them as Discrete Markov Chains. The demand is also treated as stochastic parameter because it depends on the stochastic behavior of the hurricane. However, for the meta-model, the demand is an input that is determined using Hazards United States (HAZUS), a software developed by the Federal Emergency Management Agency (FEMA) that estimates losses due to hurricanes and floods. A solution heuristic has been developed based on simulated annealing. Since the meta-model is a multi-objective problem, the heuristic is a multi-objective simulated annealing (MOSA), in which the initial solution and the cooling rate were determined via a Design of Experiments. The experiment showed that the initial temperature (T0) is irrelevant, but temperature reduction (δ) must be very gradual. Assessment of the meta-model indicates that the Markov Chains performed as well or better than forecasts made by the National Hurricane Center (NHC). Tests of the MOSA showed that it provides solutions in an efficient manner. Thus, an illustrative example shows that the meta-model is practical.