996 resultados para liver protection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La vaccination ADN à l’aide de plasmides codant pour des autoantigènes s’est avérée efficace dans la protection contre plusieurs maladies auto-immunes. Le but de ce mémoire était dans un premier temps d’établir si un protocole de vaccination ADN composé de 3 injections de pCMV-CTLA-4-NP et de pVR-IL-12 à deux semaines d’intervalle avait un effet protecteur contre le développement d’une hépatite auto-immune chez la souris TTR-NP, un modèle murin transgénique de la maladie et précédemment développé au laboratoire. Dans un deuxième temps, le but était d’élucider, le cas échéant, les mécanismes sous-tendant la protection conférée par la vaccination ADN. Les hypothèses initiales étaient qu’une protection allait effectivement être conférée par la vaccination ADN et que celle-ci pouvait être attribuable à une déviation de la réponse typiquement Th1 de la maladie vers une réponse Th2, à un épuisement des cellules immunitaires et/ou à l’activation et à l’induction de prolifération de cellules régulatrices. Les résultats montrent que la vaccination ADN induit une protection transitoire contre le développement d’infiltrations lymphocytaires au foie. Cette protection se ferait via un épuisement des cellules CD4+, CD8+ et CD19+ se retrouvant à la rate et exprimant PD 1 dans une plus forte proportion à 3 mois, et ne serait médiée ni par les lymphocytes T régulateurs CD4+CD25+FoxP3+, ni par les cellules CD8+FoxP3+. Une déviation de la réponse Th1 vers une réponse Th2 demeure une explication supplémentaire plausible à la protection conférée mais nécessiterait une caractérisation en situation plus physiologique avant de pouvoir inférer sur son implication réelle. La vaccination ADN n’influe ni sur la présence d’autoanticorps, ni sur les niveaux d’alanine aminotransférase, deux marqueurs de la maladie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a study about the influence of the porphyrin metal center and mesa ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca(2+). Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate human leucocyte antigen (HLA) genes in patients chronically infected with hepatitis C virus (HCV) and to analyse the possible role of these genes in the progression of chronic hepatitis C. One hundred and forty-five (145) Brazilian patients infected only with HCV genotype 1 were evaluated. HLA class I (A*, B*, C*) and class II (DRB1*, DQA1*, DQB1*) typing were carried out by PCR-SSO, through Luminex technology. Associations were found with protection against development of liver damage by both DRB1*11 (5.0% versus 18.2%, P = 0.0016, OR = 0.23, CI 95% = 0.090.58; Pc=0.0208) and DRB1*11-DQA1*05-DQB1*03 haplotype (4.2% versus 15.3%, P = 0.0032; OR = 0.24, CI 95% = 0.08-0.64). Liver damage was associated with HLA-C*04 in patients with <20 years of infection (38.4% versus 9.1%, P = 0.002, OR = 6.25, CI 95% = 1.9719.7; Pc=0.0238). It is concluded that HLA alleles can influence the development of liver damage in HCV type-1 chronically infected Brazilian patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study was to assess clinical and inflammatory markers in nonalcoholic fatty liver disease (NAFLD) in postmenopausal women with metabolic syndrome.Methods: This cross-sectional study included 180 Brazilian women (age >= 45 years and amenorrhea >= 12 months). Metabolic syndrome was diagnosed by the presence of at least three of the following indicators: Waist circumference (WC) > 88 cm, triglycerides (TGs) >= 150 mg/dL, high-density lipoprotein (HDL) < 50 mg/dL; blood pressure >= 130/85 mmHg; and glucose >= 100 mg/dL. NAFLD was diagnosed by abdominal ultrasound. Participants were divided into three groups: Metabolic syndrome alone (n = 53); metabolic syndrome + NAFLD (n = 67); or absence of metabolic syndrome or NAFLD (control, n = 60). Clinical, anthropometric, and biochemical variables were quantified. The inflammatory profile included adiponectin, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha). Data were submitted to statistical analysis using a Tukey test, analysis of variance (ANOVA), chi-squared, Pearson correlation, and logistic regression (odds ratio, OR).Results: Women with metabolic syndrome + NAFLD, abdominal obesity, high glucose, and insulin resistance by HOMA-IR were compared to women with metabolic syndrome alone and controls (P < 0.05). High values of IL-6 and TNF-alpha and low values of adiponectin were observed among women with metabolic syndrome alone or metabolic syndrome + NAFLD when compared to controls (P < 0.05). In multivariate analysis, the variables considered as risk of NAFLD development were: High systolic blood pressure (SBP) [(OR 1.02, 95% confidence interval (CI) 1.0-1.04]; large WC (OR 1.07, 95% CI 1.01-1.13); insulin resistance (OR 3.81, 95% CI 2.01-7.13); and metabolic syndrome (OR 8.68, 95% CI 3.3-24.1). Adiponectin levels reduced NAFLD risk (OR 0.88, 95% CI 0.80-0.96).Conclusion: In postmenopausal women, metabolic syndrome, abdominal obesity, and insulin resistance were risk markers for the development of NAFLD, whereas higher adiponectin values indicated a protection marker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When calcinine (A-23187) (2 mu M), a known Ca2+ ionophore, is present, a significant protection is observed to a mitochondrial suspension undergoing lipid peroxidation by Fe2+-citrate complex. A-23187 can remove Ca2+, which seems to have an important role in the lipid peroxidation process, from its 'lesive sites' and consequently preventing the damage. This information has importance in terms of knowing the mechanisms and avoiding the damages of lipid peroxidation that occur in some pathological cases such as tumor promotion and hemochromatosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging is characterized by a chronic, low-grade inflammatory state called “inflammaging”. Mitochondria are the main source of reactive oxygen species (ROS), which trigger the production of pro-inflammatory molecules. We are interested in studying the age-related modifications of the mitochondrial DNA (mtDNA), which can be affected by the lifelong exposure to ROS and are responsible of mitochondrial dysfunction. Moreover, increasing evidences show that telomere shortening, naturally occurring with aging, is involved in mtDNA damage processes and thus in the pathogenesis of age-related disorders. Thus the primary aim of this thesis was the analysis of mtDNA copy number, deletion level and integrity in different-age human biopsies from liver, vastus lateralis skeletal muscle of healthy subjects and patients with limited mobility of lower limbs (LMLL), as well as adipose tissue. The telomere length and the expression of nuclear genes related to mitobiogenesis, fusion and fission, mitophagy, mitochondrial protein quality control system, hypoxia, production and protection from ROS were also evaluated. In liver the decrease in mtDNA integrity with age is accompanied with an increase in mtDNA copy number, suggesting the existence of a “compensatory mechanism” able to maintain the functionality of this organ. Different is the case of vastus lateralis muscle, where any “compensatory pathway” is activated and mtDNA integrity and copy number decrease with age, both in healthy subjects and in patients. Interestingly, mtDNA rearrangements do not incur in adipose tissue with advancing age. Finally, in all tissues a marked gender difference appears, suggesting that aging and also gender diversely affect mtDNA rearrangements and telomere length in the three human tissues considered, likely depending on their different metabolic needs and inflammatory status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently it has been shown in rodent malaria models that immunisation with genetically attenuated Plasmodium parasites can confer sterile protection against challenge with virulent parasites. For the mass production of live attenuated Plasmodium parasites for vaccination, safety is a prerequisite. Knockout of a single gene is not sufficient for such a strategy since the parasite can likely compensate for such a genetic modification and a single surviving parasite is sufficient to kill an immunised individual. Parasites must therefore be at least double-attenuated when generating a safe vaccine strain. Genetic double-attenuation can be achieved by knocking out two essential genes or by combining a single gene knockout with the expression of a protein toxic for the parasite. We generated a double-attenuated Plasmodium berghei strain that is deficient in fatty acid synthesis by the knockout of the pdh-e1α gene, introducing a second attenuation by the liver stage-specific expression of the pore-forming bacterial toxin perfringolysin O. With this double genetically attenuated parasite strain, a superior attenuation was indeed achieved compared with single-attenuated strains that were either deficient in pyruvate dehydrogenase (PDH)-E1 or expressed perfringolysin O. In vivo, both single-attenuated strains resulted in breakthrough infections even if low to moderate doses of sporozoites (2,000-5,000) were administered. In contrast, the double genetically attenuated parasite strain, given at moderate doses of 5,000 sporozoites, did not result in blood stage infection and even when administered at 5- to 20-fold higher doses, only single and delayed breakthrough infections were observed. Prime booster immunisation with the double genetically attenuated parasite strain completely protected a susceptible mouse strain from malaria and even a single immunisation conferred protection in some cases and lead to a markedly delayed onset of blood stage infection in others. Importantly, premature rupture of the parasitophorous vacuole membrane by liver stage-specific perfringolysin O expression did not induce host cell death and soluble parasite proteins, which are released into the host cell cytoplasm, have the potential to be processed and presented via MHC class I molecules. This, in turn, might support immunological responses against Plasmodium-infected hepatocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5'-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5'-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver transplantation recipients, like other solid organ transplantation recipients, have an increased risk of dermatologic problems due to their long-term immunosuppression and benefit from pre-and post-transplantation screenings, and management by a dermatologist and dermatologic care should be integrated into the comprehensive, multidisciplinary care of liver transplantation recipients [1,2]. Cutaneous findings include aesthetic alterations, infections, precancerous lesions, and malignancies. The severity of skin alterations ranges from benign, unpleasant changes to life-threatening conditions [3-5]. In addition to skin cancer diagnosis and management, visits with a dermatologist serve to educate and improve the patient's sun-protection behavior. Among all solid organ transplantations, liver transplantation requires the least amount of immunosuppression, sometimes even permitting its complete cessation [6]. As a result, patients who have undergone liver transplantation tend to have fewer dermatologic complications compared with other solid organ transplantation recipients [7]. However, due to the large volume of the liver, patients undergoing liver transplantation receive more donor lymphocytes than kidney, heart, or lung transplantation recipients. Because of the immunosuppression, the transplanted lymphocytes proliferate and rarely trigger graft-versus-host-disease [8,9]. This topic will provide an overview of dermatologic disorders that may be seen following liver transplantation. A detailed discussion of skin cancer following solid organ transplantation and the general management of patients following liver transplantation are discussed separately. (See "Development of malignancy following solid organ transplantation" and "Management of skin cancer in solid organ transplant recipients" and "Long-term management of adult liver transplant recipients".)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a unique population of lymphocytes that coexpress a semiinvariant T cell and natural killer cell receptors, which are particularly abundant in the liver. To investigate the possible effect of these cells on the development of the liver stages of malaria parasites, a glycolipid, α-galactosylceramide (α-GalCer), known to selectively activate Vα14 NKT cells in the context of CD1d molecules, was administered to sporozoite-inoculated mice. The administration of α-GalCer resulted in rapid, strong antimalaria activity, inhibiting the development of the intrahepatocytic stages of the rodent malaria parasites Plasmodium yoelii and Plasmodium berghei. The antimalaria activity mediated by α-GalCer is stage-specific, since the course of blood-stage-induced infection was not inhibited by administration of this glycolipid. Furthermore, it was determined that IFN-γ is essential for the antimalaria activity mediated by the glycolipid. Taken together, our results provide the clear evidence that NKT cells can mediate protection against an intracellular microbial infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Augmentation of vertebrate growth by growth hormone (GH) is primarily due to its regulation of insulin-like growth factor I (IGF I) and IGF II levels. To characterize the effect of GH on the levels of IGF I and IGF II mRNA in a teleost, 10 micrograms of bovine GH (bGH) per g of body weight was administered to juvenile rainbow trout (Oncorhynchus mykiss) through i.p. injection. The levels of IGF I and IGF II mRNA were determined simultaneously, by using RNase protection assays, in the liver, pyloric ceca, kidney, and gill at 0, 1, 3, 6, 12, 24, 48, and 72 hr after injection. In the liver, IGF I mRNA levels were significantly elevated at 6 and 12 hr (approximately 2- to 3-fold, P < or = 0.01), while IGF II mRNA levels were significantly elevated at 3 and 6 hr (approximately 3-fold, P < or = 0.01). In the pyloric ceca, IGF II mRNA levels were significantly elevated at 12, 24, and 48 hr (approximately 3-fold, P < or = 0.01), while IGF I mRNA was below the limits of assay accuracy. GH-dependent IGF mRNA appearance was not detected in the gill and kidney. Serum bGH levels, determined by using a radioimmunoassay, were significantly elevated at 3 and 6 hr (P < 0.005). In primary hepatocyte culture, IGF I and IGF II mRNA levels increased in a bGH dose-dependent fashion, with ED50 values of approximately 45 and approximately 6 ng of bGH per ml, respectively. The GH-dependent appearance of IGF II mRNA in the liver and pyloric ceca suggests important roles for this peptide hormone exclusive of IGF I.