891 resultados para liquids and polymers
Resumo:
The effect of metal ions on the conformation of thymine-containing poly-D-lysine was studied by CD spectra in aqueous solution. Of the metal ions studied,only copper(Ⅱ)ion affected the conformation of mucleic acid analogs .copper(Ⅱ)ion also affected the specifically interacting system made up of thymine-containing poly-D-lysine and polyadenylic acid.
Resumo:
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.
Resumo:
Room-temperature ionic liquids (RTILs) are liquids at room temperature and represent a new class of nonaqueous but polar solvents with high ionic conductivity. The conductivity property of carbon nanotubes/RTILs and carbon microbeads/RTILs composite materials has been studied using ac impedance technology. Enzyme coated by RTILs-modified gold and glassy carbon electrodes allow efficient electron transfer between the electrode and the protein and also catalyze the reduction Of O-2 and H2O2,
Resumo:
The use of room-temperature ionic liquids (RTILs) as media for electrochemical application is very attractive. In this work, the electrochemical deposition of silver was investigated at a glassy carbon electrode in hydrophobic 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and hydrophilic 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) RTILs and in KNO3 aqueous solution by cyclic voltammetric and potentiostatic transient techniques. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of silver from AgBF4 in both BMIMPF6 and BMIMBF4, resembling the redox behavior of AgNO3 in KNO3 aqueous solution. A crossover loop was observed in all the cyclic voltammograms of these electrochemical systems, indicating a nucleation process. From the analysis of the experimental current transients, it was shown that the electrochemical deposition process of silver in these media was characteristic of 3D nucleation with diffusion-controlled hemispherical growth, and the silver nucleation closely followed the response predicted for progressive nucleation in BMIMPF6 and instantaneous nucleation in KNO3 aqueous solution, respectively.
Resumo:
Greaves, George; Sen, S., (2007) 'Inorganic glasses, glass-forming liquids and amorphizing solids', Advances in Physics 56(1) pp.1-166 RAE2008
Resumo:
The structure and properties of the interfaces between the room temperature ionic liquid dimethylimidazolium chloride ([dmim]Cl) and different Lennard-Jones fluids and between ionic liquid and water have been studied by molecular dynamics simulations, and compared to the ionic liquid-vapour interface. Two contrasting types of interface were investigated, thermodynamically stable interfaces between ionic liquid and vapour and between ionic liquid and Lennard-Jones fluids, and diffusing interfaces between miscible phases of different compositions involving water. The density profiles of different species through the interface are presented. The cations and water molecules near the former type of interface are aligned relative to the surface, but no orientational preference was found near or in the broad diffusing interface. The ionic liquid has a negative electrostatic potential relative to vapour or Lennard-Jones fluid, but is more positive than pure water. This contrast is explained in terms of the relative importance of orientation and concentration differences in the two types of interface.
Resumo:
We summarize results obtained by a combination of ab initio and classical computer simulations of dialkylimidazolium ionic liquids in different states of aggregation, from crystals to liquids and clusters. Unusual features arising from the competition between electrostatic, dispersion, and hydrogen-bonding interactions are identified at the origin of observed structural patterns. We also discuss the way Brønsted acids interact with ionic liquids leading to the formation of hydrogen-bonded anions.
Coordination environment of [UO2Br4](2-) in ionic liquids and crystal structure of [Bmim](2)[UO2Br4]
Resumo:
The complex formed by the reaction of the uranyl ion, UO22+, with bromide ions in the ionic liquids 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmiml[Tf2N]) and methyl-tributylammonium bis(trifluoromethylsulfonyl)imide ([MeBu3N][Tf2N]) has been investigated by UV-Vis and U L-III-edge EXAFS spectroscopy and compared to the crystal structure of [Bmim](2)[UO2Br4]. The solid state reveals a classical tetragonal bipyramid geometry for [UO2Br4](2-) with hydrogen bonds between the Bmim(+) and the coordinated bromides. The UV-Vis spectroscopy reveals the quantitative formation of [UO2Br4](2-) when a stoichiometric amount of bromide ions is added to UO2(CF3SO3)(2) in both Tf2N-based ionic liquids. The absorption spectrum also suggests a D-4h symmetry for [UO2Br4](2-) in ionic liquids, as previously observed for the [UO2Cl4](2-) congener. EXAFS analysis supports this conclusion and demonstrates that the [UO2Br4](2-) coordination polyhedron is maintained in the ionic liquids without any coordinating solvent or water molecules. The mean U-O and U-Br distances in the solutions, determined by EXAFS, are, respectively, 1.766(2) and 2.821(2)angstrom in [Bmim][Tf2N], and, respectively, 1.768(2) and 2.827(2) angstrom, in [MeBu3N][Tf2N]. Similar results are obtained in both ionic liquids indicating no significant influence of the ionic liquid cation either on the complexation reaction or on the structure of the uranyl species. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fourier transform ion cyclotron resonance mass spectrometry experiments showed that liquid Group 1 metal salts of the bistriflamide anion undergoing reduced-pressure distillation exhibit a remarkable behavior that is in transition between that of the vapor-liquid equilibrium characteristics of aprotic ionic liquids and that of the Group 1 metal halides: the unperturbed vapors resemble those of aprotic ionic liquids, in the sense that they are essentially composed of discrete ion pairs. However, the formation of large aggregates through a succession of ion-molecule reactions is closer to what might be expected for Group I metal halides. Similar experiments were also carried out with bis{(trifluoromethyl)sulfonyl}amine to investigate the effect of H+, which despite being the smallest Group 1 cation, is generally regarded as a nonmetal species. In this case, instead of the complex ion-molecule reaction pattern found for the vapors of Group I metal salts, an equilibrium similar to those observed for aprotic ionic liquids was observed.
Resumo:
New protic ionic liquids (PILs) based on the diisopropyl-ethylammonium cation have been synthesized through a simple and atom-economic neutralization reaction between the diisopropyl-ethylamine and selected carboxylic acid. Densities and rheological properties were then measured for two original diisopropyl-ethylammonium-based protic ionic liquids (heptanoate and octanoate) at 298.15 K and atmospheric pressure. The effect of the presence of water or acetonitrile on the measured values was also examined over the whole composition range at 298.15 K and atmospheric pressure. From these values, excess properties were calculated and correlated by using a Redlich-Kister-type equation. Finally, a qualitative analysis of the evolution of studied properties with the alkyl chain length of the anion and with the presence or not of water (or acetonitrile) was performed. From this analysis, it appears that selected PILs and their mixtures with water or acetonitrile have a non-Newtonian shear thickening behavior, and the addition of water or acetonitrile on these PILs increases this phenomena by the formation of aggregates in these media.