991 resultados para leaf surface


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective was to study the leaf temperature (LT) and leaf diffusive vapor conductance (gs) responses to temperature, humidity and incident flux density of photosynthetically active photons (PPFD) of tomato plants grown without water restriction in a plastic greenhouse in Santa Maria, RS, Brazil. The plants were grown in substrate and irrigated daily. The gs was measured using a steady-state null-balance porometer on the abaxial face of the leaves during the daytime. Both leaf surfaces were measured in one day. The PPFD and LT were measured using the porometer. Leaf temperature was determined using an infrared thermometer, and air temperature and humidity were measured using a thermohygrograph. The leaves on the upper layer of the plants had higher gs than the lower layer. The relationship between the gs and PPFD was different for the two layers in the plants. A consistent relationship between the gs and atmospheric water demand was observed only in the lower layer. The LT tended to be lower than the air temperature. The mean value for the gs was 2.88 times higher on the abaxial than adaxial leaf surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Die vorliegende Dissertation untersucht die biogeochemischen Vorgänge in der Vegetationsschicht (Bestand) und die Rückkopplungen zwischen physiologischen und physikalischen Umweltprozessen, die das Klima und die Chemie der unteren Atmosphäre beeinflussen. Ein besondere Schwerpunkt ist die Verwendung theoretischer Ansätze zur Quantifizierung des vertikalen Austauschs von Energie und Spurengasen (Vertikalfluss) unter besonderer Berücksichtigung der Wechselwirkungen der beteiligten Prozesse. Es wird ein differenziertes Mehrschicht-Modell der Vegetation hergeleitet, implementiert, für den amazonischen Regenwald parametrisiert und auf einen Standort in Rondonia (Südwest Amazonien) angewendet, welches die gekoppelten Gleichungen zur Energiebilanz der Oberfläche und CO2-Assimilation auf der Blattskala mit einer Lagrange-Beschreibung des Vertikaltransports auf der Bestandesskala kombiniert. Die hergeleiteten Parametrisierungen beinhalten die vertikale Dichteverteilung der Blattfläche, ein normalisiertes Profil der horizontalen Windgeschwindigkeit, die Lichtakklimatisierung der Photosynthesekapazität und den Austausch von CO2 und Wärme an der Bodenoberfläche. Desweiteren werden die Berechnungen zur Photosynthese, stomatären Leitfähigkeit und der Strahlungsabschwächung im Bestand mithilfe von Feldmessungen evaluiert. Das Teilmodell zum Vertikaltransport wird im Detail unter Verwendung von 222-Radon-Messungen evaluiert. Die ``Vorwärtslösung'' und der ``inverse Ansatz'' des Lagrangeschen Dispersionsmodells werden durch den Vergleich von beobachteten und vorhergesagten Konzentrationsprofilen bzw. Bodenflüssen bewertet. Ein neuer Ansatz wird hergeleitet, um die Unsicherheiten des inversen Ansatzes aus denjenigen des Eingabekonzentrationsprofils zu quantifizieren. Für nächtliche Bedingungen wird eine modifizierte Parametrisierung der Turbulenz vorgeschlagen, welche die freie Konvektion während der Nacht im unteren Bestand berücksichtigt und im Vergleich zu früheren Abschätzungen zu deutlich kürzeren Aufenthaltszeiten im Bestand führt. Die vorhergesagte Stratifizierung des Bestandes am Tage und in der Nacht steht im Einklang mit Beobachtungen in dichter Vegetation. Die Tagesgänge der vorhergesagten Flüsse und skalaren Profile von Temperatur, H2O, CO2, Isopren und O3 während der späten Regen- und Trockenzeit am Rondonia-Standort stimmen gut mit Beobachtungen überein. Die Ergebnisse weisen auf saisonale physiologische Änderungen hin, die sich durch höhere stomatäre Leitfähigkeiten bzw. niedrigere Photosyntheseraten während der Regen- und Trockenzeit manifestieren. Die beobachteten Depositionsgeschwindigkeiten für Ozon während der Regenzeit überschreiten diejenigen der Trockenzeit um 150-250%. Dies kann nicht durch realistische physiologische Änderungen erklärt werden, jedoch durch einen zusätzlichen cuticulären Aufnahmemechanismus, möglicherweise an feuchten Oberflächen. Der Vergleich von beobachteten und vorhergesagten Isoprenkonzentrationen im Bestand weist auf eine reduzierte Isoprenemissionskapazität schattenadaptierter Blätter und zusätzlich auf eine Isoprenaufnahme des Bodens hin, wodurch sich die globale Schätzung für den tropischen Regenwald um 30% reduzieren würde. In einer detaillierten Sensitivitätsstudie wird die VOC Emission von amazonischen Baumarten unter Verwendung eines neuronalen Ansatzes in Beziehung zu physiologischen und abiotischen Faktoren gesetzt. Die Güte einzelner Parameterkombinationen bezüglich der Vorhersage der VOC Emission wird mit den Vorhersagen eines Modells verglichen, das quasi als Standardemissionsalgorithmus für Isopren dient und Licht sowie Temperatur als Eingabeparameter verwendet. Der Standardalgorithmus und das neuronale Netz unter Verwendung von Licht und Temperatur als Eingabeparameter schneiden sehr gut bei einzelnen Datensätzen ab, scheitern jedoch bei der Vorhersage beobachteter VOC Emissionen, wenn Datensätze von verschiedenen Perioden (Regen/Trockenzeit), Blattentwicklungsstadien, oder gar unterschiedlichen Spezies zusammengeführt werden. Wenn dem Netzwerk Informationen über die Temperatur-Historie hinzugefügt werden, reduziert sich die nicht erklärte Varianz teilweise. Eine noch bessere Leistung wird jedoch mit physiologischen Parameterkombinationen erzielt. Dies verdeutlicht die starke Kopplung zwischen VOC Emission und Blattphysiologie.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water repellent abaxial holm oak leaf sides. The surface free energy, polarity and solubility parameter decreased with leaf age, with generally higher values determined for the abaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical-chemistry, and plant ecophysiology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The opticalp ropertieso f the leaves of twelve tropicals un speciesa nd thirteent ropicale xtreme shade species were examinedw ith an integratings pherea ttachedt o a spectroradiometerM. easurements of diffuse reflectance and transmittance allowed calculations of absorptance, 350- 1,100 nm. Althoughs ome shade species absorbedh igherp ercentageso f quantumf lux densities for photosynthesis (400-700 nm, PPFD) than the mean for the sun species, the sun and shade species as groups were not significantly different from each other: 90.2, S.D. 3.6% for shade species and 88.6, S.D. 2.4% for the sun species. The groups of species did not differ in total absorptance of energy 350-1,100 nm. Furthermore, the sun and shade species were identical in theirs hifto f absorptancea t wavelengthsb etween6 50 and 750 nm. The anthocyanicc oloration of the leaf undersurfaceso f two species polymorphicf or this characteristic( Trionela hirsuta and Ischnosciphonp ruinosus)i s correlatedw ith increaseda bsorptancea t the uppere nd of the action spectrum of photosynthesis. Although sun and shade species have similar optical properties, the energy investment (as documented by dry wt per unit area of leaf surface) is much less for the shade species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-spotted mite, Tetranychus urticae Koch, was until recently regarded as a minor and infrequent pest of papaya in Queensland through the dry late winter/early summer months. The situation has changed over the past 4-5 years, so that now some growers consider spider mites significant pests all year round. This altered pest status corresponded with a substantial increase in the use of fungicides to control black spot (Asperisporium caricae). A project was initiated in 1998 to examine the potential reasons for escalating mite problems in commercially-grown papaya, which included regular sampling over a 2 year period for mites, mite damage and beneficial arthropods on a number of farms on the wet tropical coast and drier Atherton Tableland. Differences in soil type, papaya variety, chemical use and some agronomic practices were included in this assessment. Monthly visits were made to each site where 20 randomly-selected plants from each of 2 papaya lines (yellow and red types) were surveyed. Three leaves were selected from each plant, one from each of the bottom, middle and top strata of leaves. The numbers of mobile predators were recorded, along with visual estimates of the percentage and age of mite damage on each leaf. Leaves were then sprayed with hairspray to fix the mites and immature predators to the leaf surface. Four leaf disks, 25 mm in diameter, were then punched from each leaf into a 50 ml storage container with a purpose-built disk-cutting tool. Disks from each leaf position were separated by tissue paper, within the container. On return to the laboratory, each leaf disk was scrutinised under a binocular microscope to determine the numbers of two-spotted mites and eggs, predatory mites and eggs, and the immature stages of predatory insects (mainly Stethorus, Halmus and lacewings). A total of 2160 leaf disks have been examined each month. All data have been entered into an Access database to facilitate comparisons between sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q.eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth. 10.1111/(ISSN)1469-8137

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catharanthus roseus is the sole biological source of the medicinal compounds vinblastine and vincristine. These chemotherapeutic compounds are produced in the aerial organs of the plant, however they accumulate in small amounts constituting only about 0.0002% of the fresh weight of the leaf. Their limited biological supply and high economical value makes its biosynthesis important to study. Vinblastine and vincristine are dimeric monoterpene indole alkaloids, which consists of two monomers vindoline and catharanthine. The monoterpene indole alkaloids (MIA's) contain a monoterpene moiety which is derived from the iridoid secologanin and an indole moiety tryptamine derived from the amino acid tryptophan. The biosynthesis of the monoterpene indole alkaloids has been localized to at least three cell types namely, the epidermis, the laticifer and the internal phloem assisted parenchyma. Carborundum abrasion (CA) technique was developed to selectively harvest epidermis enriched plant material. This technique can be used to harvest metabolites, protein or RNA. Sequencing of an expressed sequence tagged (EST) library from epidermis enriched mRNA demonstrated that this cell type is active in synthesizing a variety of secondary metabolites namely, flavonoids, lipids, triterpenes and monoterpene indole alkaloids. Virtually all of the known genes involved in monterpene indole alkaloid biosynthesis were sequenced from this library.This EST library is a source for many candidate genes involved in MIA biosynthesis. A contig derived from 12 EST's had high similarity (E'^') to a salicylic acid methyltransferase. Cloning and functional characterization of this gene revealed that it was the carboxyl methyltransferase imethyltransferase (LAMT). In planta characterization of LAMT revealed that it has a 10- fold enrichment in the leaf epidermis as compared to the whole leaf specific activity. Characterization of the recombinant enzyme revealed that vLAMT has a narrow substate specificity as it only accepts loganic acid (100%) and secologanic acid (10%) as substrates. rLAMT has a high Km value for its substrate loganic acid (14.76 mM) and shows strong product inhibition for loganin (Kj 215 |iM). The strong product inhibition and low affinity for its substrate may suggest why the iridoid moiety is the limiting factor in monoterpene indole alkaloid biosynthesis. Metabolite profiling of C. roseus organs shows that secologanin accumulates within these organs and constitutues 0.07- 0.45% of the fresh weight; however loganin does not accumulate within these organs suggesting that the product inhibition of loganin with LAMT is not physiologically relevant. The limiting factor to iridoid and MIA biosynthesis seems to be related to the spatial separation of secologanin and the MIA pathway, although secologanin is synthesized in the epidermis, only 2-5% of the total secologanin is found in the epidermis while the remaining secologanin is found within the leaf body inaccessable to alkaloid biosynthesis. These studies emphasize the biochemical specialization of the epidermis for the production of secondary metabolites. The epidermal cells synthesize metabolites that are sequestered within the plant and metabolites that are secreted to the leaf surface. The secreted metabolites comprise the epidermome, a layer separating the plant from its environment.