809 resultados para latex
Resumo:
The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.
Resumo:
The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-T-g (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-T-g (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology.
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.
Resumo:
A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.
Resumo:
The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.
Resumo:
Polycarbonate (PC) and a core-shell latex polymer composed of poly(butyl acrylate) and poly(methyl methacrylate) (PBA-cs-PMMA) as core and shell, respectively, were mixed using a Brabender-like apparatus under different conditions. The mechanical properties, the morphology and the processability of the blends were investigated. Because of the good compatibility of PC and PMMA, even dispersion of PBA-cs-PMMA in PC matrix and good adhesion between the components have been achieved. PBA-cs-PMMA is thus a very good impact modifier for PC. The toughening mechanism is both cavitation and shear yielding, as indicated by SEM observation. (C) 1997 Elsevier Science Ltd.
Resumo:
This book originally accompanied a 2-day course on using the LATEX typesetting system. It has been extensively revised and updated and can now be used or self-study or in the classroom. It is aimed at users of Linux, Macintosh, or Microsoft Windows but it can be used with LATEX systems on any platform, including other Unix workstations, mainframes, and even your Personal Digital Assistant (PDA).
Resumo:
This paper advances findings of Yang et al. 2010 and reports on how slight changes in pH or Ionic strength can significantly alter particle behaviour in porous media, when humic acids have been deposited beforehand. .
Resumo:
Background: Children with spina bifida represent the major risk group for latex sensitization. Purpose: To determine the prevalence of latex sensitization in these children and to identify risk factors. Material and methods: We studied 57 patients with spina bifida. The mean age was 5.6 years and the male/female ratio was 0.8/1. In all patients a questionnaire, skin prick test (SPT) with latex (UCBStallergènes, Lofarma and ALK-Abelló), common aeroallergens and fruits (UCB-Stallergènes) and serum determination of total IgE (AlaSTAT) were performed. Results: The prevalence of latex sensitization was 30 %; only two sensitized children (12 %) had symptoms after exposure. Risk factors for latex sensitization were age 5 years (p = 0.008; OR = 6.0; 95% CI = 1.7-22.1), having at least four previous surgical interventions (p < 0.0001; OR = 18.5; 95% CI = 3.6-94.8), having undergone surgery in the first 3 months of life (p = 0.008; OR = 5.4; 95% CI = 0.7-29.2) and total serum IgE 44 IU/ml (p = 0.03; OR = 3.8; 95 %CI = 1.1-13.1). Multiple logistic regression analysis showed that only a history of four or more surgical interventions (p < 0.0001; OR = 26.3; 95 %CI = 2.9-234.2) and total serum IgE 44 IU/ml (p = 0.02; OR = 8.6; 95% CI = 1.4-53.4) were independently associated with latex sensitization. Sex, family and personal allergic history, hydrocephalus with ventriculoperitoneal shunt, cystourethrograms, intermittent bladder catheterization and atopy were not related to latex sensitization. Conclusions: In children with spina bifida, significant and independent risk factors identified for latex sensitization were multiple interventions and higher levels of total serum IgE. A prospective study will clarify the clinical evolution of assymptomatic children sensitized to latex.
Resumo:
Prevulcanized natural rubber latex was prepared by the heating of the latex compound at 55°C for different periods of time (2, 4, 6, 8, and 10 h). The changes in the colloidal stability and physical properties were evaluated during the course of prevulcanization. The prevulcanized latex compounds were stored for 300 days, and the properties were monitored at different storage intervals (0, 20, 40, 60, 120, 180, 240, and 300 days). During prevulcanization, the mechanical stability time increased, and the viscosity remained almost constant. The tensile strength increased during storage for a period of 20 days. The degree of crosslinking, modulus, elongation at break, and chloroform number were varied with the time of storage.