991 resultados para late leaf spot
Resumo:
The cercospora leaf spot, caused by Cercospora abelmoschi Ellis and Everhart, is quite common in okra culture. Therefore, this study aimed to evaluate the efficiency of aqueous extracts of neem ( Azadirachta indica A. Juss), citronella ( Cymbopogon nardus (L.) Rendle), eucalyptus ( Eucalyptus grandis L.), ecolife®, A. indica oil and fungicide cercobin 700 PM® in control of cercospora leaf spot on okra in greenhouse. The extracts and neem oil were tested in concentration 10%, the fungicide cercobin 700PM® in dose 2.5 g.l-1, applied 10 days after pathogen inoculation by leaf spray and the citric biomass extract ecolife® in concentration 5.0 ml.l-1, applied 10 days before pathogen inoculation. All treatments, except ecolife®, were effective in controlling cercospora leaf spot and may be recommended as alternatives in agroecological systems.
Resumo:
Based on the evidences presented in this paper, results from classical genetic studies, fine-mapping information and physical position analysis using the reference genome sequence of P. vulgaris, the BIC Genetic Committee has formally accepted the proposed new gene symbols.
Resumo:
The aim of this study was to identify sources of resistance in the germplasm collection providing information of potential sources of resistance to introduce in breeding programs.
Resumo:
Cultivares comerciais de macieiras são infectadas por 3 espécies principais de vírus: Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV) e Apple stem pitting virus (ASPV), geralmente em infecções complexas. O objetivo do estudo foi caracterizar a diversidade genética de genes da proteína capsidial (CP) de isolados de ACLSV.
Resumo:
Apples are commercially grown in Brazil in a subtropical environment that favors the development of fungal diseases such as Glomerella leaf spot (GLS) caused mainly by Glomerella cingulata (anamorph Colletotrichum gloeosporioides). The main objective of this work was to evaluate the effect of mixed infections by Apple stem grooving virus (ASGV) and Apple stem pitting virus (ASPV) on the infection and the colonization processes of C. gloeosporiodes in cv. Maxi Gala plants. Leaves of 16-month-old potted plants were spray-inoculated and both the disease incidence and lesion count were monitored over time and leaf severity was assessed in the final evaluation using an image analysis tool. Results showed that initial infection estimated from a monomolecular model fitted to progress of lesion count was higher and the incubation period (time to reach 50% incidence) was on average 10 h shorter in virus-infected plants compared to non-infected plants. It is hypothesized that initial events such as conidial germination and fungal penetration into plant cells were facilitated by the presence of viral infection. Also, final GLS severity was significantly higher in the virus-infected plants. Mixed infections by ASGV/ASPV seemed to make apple leaves more susceptible to the initial infection and colonization by C. gloeosporioides.
Resumo:
Late leaf spot (LLS), caused by the fun.-us Cercosporidium personatum, is one of the most severe diseases in peanut (Arachis hypogaea). The vast majority of commercial cultivars do not exhibit satisfactory levels of resistance to the pathogen, whereas non-commercial genotypes cv. 850 and cv. 909 are resistant to LLS and show symptoms similar to hypersensitive response (HR) lesions. In the present study, we investigated the molecular components of the initial stages of the resistance by gene expression profiling using suppression subtractive hybridization and differential screening of cDNA macroarray techniques. Gene expression analyses have allowed us to identify more than 700 peanut unique expressed sequence taus (EST) involved in several aspects of the early stages of C. personatum pathogenesis, such as components of defense signaling pathways, gene expression regulators, cell cycle controlling genes and components of the biosynthesis of transducer and antimicrobial compounds. The most significantly induced gene corresponds to a novel O'-methyltranferase, suggesting its involvement in the production of local lesions in C. personatum-resistant A. hypogea genotypes. Taken together, our results contribute to elucidate the defense strategies of peanut and provide the framework for the generation of pathogen-resistant peanut cultivars. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Knowing the structure and distribution of nutrients in plant tissues can clarify some mechanisms of pathogen attack in plants and plant defense against infection, thus helping management strategies. The aim of this study was verify differences in distribution of mineral nutrients in coffee leaf tissues around foliar lesions of bacterial blight of coffee, blister spot, cercospora leaf, phoma leaf spot and coffee leaf rust. Fragments of leaf tissue surrounding the lesions were dehydrated in silica gel, carbon covered and subjected to X-ray microanalysis (MAX). Thirty-three chemical elements were detected in leaf tissue; however, there was variation in potassium and calcium contents surrounding the lesions. The highest potassium content was found in asymptomatic tissues surrounding the lesions, decreasing toward the transition zone and reaching minimum content in symptomatic tissues. The highest calcium content was found in symptomatic tissues, decreasing toward the transition zone and reaching minimum content in asymptomatic tissues. Therefore, MAX can be used to analyze the composition and distribution of nutrients in plant tissues and, if associated with mineral nutrition, it may help understand host-pathogen relationships and plant disease management.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Passalora calotropidis has been found for the first time in Australia on rubber bush (Calotropis procera) in northern Queensland where it was associated with a damaging leaf spot disease. Analysis of sequence data of the ITS region indicated that P calotropidis belonged to a group that consisted of species of Pseudocercospora. The generic position of P calotropidis and its potential for biological control are discussed.
Resumo:
In 2001, an incursion of Mycosphaerella fijiensis, the causal agent of black Sigatoka, was detected in Australia's largest commercial banana growing region, the Tully Banana Production Area in North Queensland. An intensive surveillance and eradication campaign was undertaken which resulted in the reinstatement of the disease-free status for black Sigatoka in 2005. This was the first time black Sigatoka had ever been eradicated from commercial plantations. The success of the eradication campaign was testament to good working relationships between scientists, growers, crop monitors, quarantine regulatory bodies and industry. A key contributing factor to the success was the deployment of a PCR-based molecular diagnostic assay, developed by the Cooperative Research Centre for Tropical Plant Protection (CRCTPP). This assay complemented morphological identification and allowed high throughput diagnosis of samples facilitating rapid decision-making during the eradication campaign. This paper describes the development and successful deployment of molecular diagnostics for black Sigatoka. Shortcomings in the gel-based assay are discussed and the advantages of highly specific real-time PCR assays, capable of differentiating between Mycosphaerella fijiensis, Mycosphaerella musicola and Mycosphaerella eumusae are outlined. Real-time assays may provide a powerful diagnostic tool for applications in surveillance, disease forecasting and resistance testing for Sigatoka leaf spot diseases.
Resumo:
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24Sr24/ locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18Lr34/ region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.
Resumo:
The main objective of this thesis was to elucidate the effects of regrowth grass silage and red clover silage on nutrient supply and milk production of dairy cows as compared with primary growth grass silages. In the first experiment (publication I), two primary growth and four regrowth grass silages were harvested at two stages of growth. These six silages were fed to 24 lactating dairy cows with two levels of concentrate allowance. Silage intake and energy corrected milk yield (ECM) responses, and the range in these response variables between the diets, were smaller when regrowth silages rather than primary growth silages were fed. Milk production of dairy cows reflected the intake of metabolizable energy (ME), and no differences in the ME utilization were found between the diets based on silages harvested from primary growth and regrowth. The ECM response to increased concentrate allowance was, on average, greater when regrowth rather than primary growth silages were fed. In the second experiment (publication II), two silages from primary growth and two from regrowth used in I were fed to rumen cannulated lactating dairy cows. Cows consumed less feed dry matter (DM), energy and protein, and produced less milk, when fed diets based on regrowth silages rather than primary growth silages. Lower milk production responses of regrowth grass silage diets were mainly due to the lower silage DM intake, and could not be accounted for by differences in energy or protein utilization. Regrowth grass silage intake was not limited due to neutral detergent fibre (NDF) digestion or rumen fill or passage kinetics. However, lower intake may be at least partly attributable to plant diseases such as leaf spot infections, dead deteriorating material or abundance of weeds, which are all higher in regrowth compared with primary growth, and increase with advancing regrowth. In the third experiment (publications III and IV), red clover silages and grass silages harvested at two stages of growth, and a mixed diet of red clover and grass silages, were fed to five rumen cannulated lactating dairy cows. In spite of the lower average ME intake for red clover diets, the ECM production remained unchanged suggesting more efficient utilisation of ME for red clover diets compared with grass diets. Intake of N, and omasal canal flows of total non-ammonia N (NAN), microbial and non-microbial NAN were higher for red clover than for grass silage diets, but were not affected by forage maturity. Delaying the harvest tended to decrease DM intake of grass silage and increase that of red clover silage. The digestion rate of potentially digestible NDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased the digestion rate for grass but increased it for red clover silage diets. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill but was most likely related to the nutritionally suboptimal diet composition because inclusion of moderate quality grass silage in mixed diet increased silage DM intake. Despite the higher total amino acid supply of cows fed red clover versus grass silage diets, further milk production responses on red clover diets were possibly compromised by an inadequate supply of methionine as evidenced by lower methionine concentration in the amino acid profile of omasal digesta and plasma. Increasing the maturity of ensiled red clover does not seem to affect silage DM intake as consistently as that of grasses. The efficiency of N utilization for milk protein synthesis was lower for red clover diets than for grass diets. It was negatively related to diet crude protein concentration similarly to grass silage diets.
Resumo:
Dark grey leaf lesions were observed on coriander (Coriandrum sativum) commercially grown at Wanneroo, Western Australia during November 2013. A species of Phoma was consistently isolated from leaf lesions. The pathogen was identified as Phoma multirostrata using morphological characteristics, DNA sequencing comparisons and pathogenicity testing. This is the first report of Phoma multirostrata causing leaf spot on coriander in Australia.