998 resultados para laser ceramics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the lasing characteristics of a laser-diode-array side-pumped electro-optic Q-switched Nd:Y3Al5O12 ceramic laser operating at 1000 Hz pulse repetition rate. Using a YAG poltcrystalline rod with Nd3+ concentration at 1 at.% as the gain medium, pumping with 808 nm laser-diode-arrays, the Q-switched laser output at 1064 nm wavelength with 23 mJ pulse energy and less than 12 ns FWHM pulse width are obtained at a pumping power of about 400 W, the slope efficiency is around 15%, the output beam divergence angle is about 1.2 mrad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CW laser output has been demonstrated for polycrystalline transparent 10 at.% Yb3+-doped Y2O3 ceramics. End-pumped with 970 nm laser diode, a maximum output power of 5.5 W has been obtained with absorbed pump power of 31.1 W. The slope efficiency is 25% while the threshold pump power is 5.6 W. Saturation is not observed in our experiments, indicating higher laser output can be expected with higher pump power. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a highly efficient Ti:sapphire end-pumped 1 at.-% Nd:YAG ceramic laser that is comparable in efficiency with Nd:YAG single crystal lasers has been developed. Optical absorption and emission spectra for Nd:YAG ceramics have been measured. With 673-mW pumping, 295-mW laser output at 1064 nm has been obtained. The laser threshold is only 13 mW. Deducted the transmitted light, the corresponding optical-to-optical conversion efficiency is 58.4%. The lasing characteristics of Nd:YAG ceramic are nearly equal to those of Nd:YAG single crystal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By employing a uniformly compact side-pumping system, a high-energy electro-optical Q-switched Nd:YAG ceramic laser has been demonstrated. With 420 W quasi-cw laser-diode-array pumping at 808 ran and a 100 Hz modulating repetition rate, 50 mJ output energy at 1064 nm was obtained with 10 ns pulse width, 5 W average output power, and 5 MW peak power. Its corresponding slope efficiency was 29.8%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output energy could be expected. Laser parameters between ceramic and single-crystal Nd:YAG lasers have been compared, and pulse characteristics of Nd:YAG ceramic with different repetition rate have been investigated in detail. The still-evolving Nd:YAG ceramics are potential super excellent media for high-energy laser applications. (C) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759 W, a minimum pulse duration of 86 ns, and a 6.7 kHz repetition rate at 3.7 W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive-index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio ( PER) of 61: 1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58: 1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity. (C) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals were synthesized and characterized by X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. Intense broad-band luminescence centering at 1200 nm was observed when the sample was excited by a diode laser at 980 nm. The room-temperature fluorescent lifetime was 665 mu s, which is longer than the Ni2+-doped ZnAl2O4 and LiGa5O8 glass-ceramics and is also comparable to the Ni2+-doped LiGa5O8 single crystal. The intense infrared luminescence with long fluorescent lifetime may be ascribed to the high crystal field hold by Ni2+ and the moderate lattice phonon energy of beta-Ga2O3. The excellent optical properties of this novel material indicate that it might be a promising candidate for broad-band amplifiers and room-temperature tunable lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broadband infrared luminescence centred at around 1300 nm with full-width at half maximum of about 342 nm was observed from transparent Ni2+-doped lithium-alumino-silicate glass-ceramics embedded with beta-eucryptite crystallines. The room temperature fluorescent lifetime was 98 mu s. The transparent glass-ceramics may have potential applications in a widely tunable laser and a super-broadband optical amplifier for optical communications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broadband infrared luminescence covering the optical telecommunication wavelength region of 0, E and S bands was observed from bismuth-doped zinc aluminosilicate glasses and glass-ceramics. The spectroscopic properties of the glasses and glass-ceramics depend on the thermal-treatment history. With the appearance of gahnite (ZnAl2O4) crystalline phase, the fluorescent peak moves to longer wavelength, but the fluorescent intensity decreases. The similar to 1300 nm fluorescence with a FWHM larger than 250 nm and a lifetime longer than 600 mu s possesses these optical materials with potential applications in laser devices and broadband amplifiers. The broad infrared luminescence from the bismuth-doped zinc aluminosilicate glasses and glass-ceramics might be from BiO or bismuth clusters rather than from Bi5+ and Bi3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 mu s. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3,Y2O3, and Nd2O3 powders. The powders were mixed in ethanol and doped with 0.5 wt% tetraethoxysilane, dried, and pressed. Pressed samples were sintered at 1750 degrees C in vacuum. Transparent fully dense samples with average grain sizes of 10 mu m were obtained. The 1 at.% Nd:YAG ceramic was used to research passively Q-switched laser output with a Cr4+:YAG crystal as a saturable absorber. An average output power of 94 mW with a pulse width of 50 ns was obtained when the incident pump power was 750 mW. The slope efficiency was 13%. The pulse energy is 5 mu J, and the peak power is about 100 W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent polycrystalline Yb:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Yb2O3 powders. The powders were mixed in ethanol and doped with 0.5 wt% tetraethoxysilane, dried, and pressed. Pressed samples were sintered at 1730 degrees C in vacuum. Transparent fully dense samples with grain sizes of several micrometers were obtained. The phase from 1500 degrees to 1700 degrees C was important for the grain growth, in which the grains grew quickly and a mass of pores were eliminated from the body of the sample. Annealing was an important step to remove the vacancies of oxygen and transform Yb2+ to Yb3+. The 1 at.% Yb:YAG ceramic sample was pumped by a diode laser to study the laser properties. The maximum output power of 1.02 W was obtained with a slope efficiency of 25% at 1030 nm. The size of the lasering sample was 4 mm x 4 mm x 3 mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectroscopic properties of (Y0.92-xLa0.08Ndx)(2)O-3 transparent ceramics were investigated. According to three intensity parameters (Omega(2),Omega(4),Omega(6)) fitted by the Judd-Ofelt theory, the spectroscopic quality parameter (X-Nd), branching ratio (beta(J,J')), and quantum efficiency (eta) of Nd3+ were determined. It was found that X-Nd of the host, owing to the additive La2O3, was decreased from 1.6 to 0.46; thus beta(J,11/2) was increased from 46% to 56.82%. A figure of merit of the specimens was discussed and compared with Nd:YAG transparent ceramic. (c) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent 1 at% Nd3+:Y1.9La0.1O3 ceramics were fabricated with nanopowders prepared by carbonate coprecipitation method. The powder compacts were sintered in H-2 atmosphere at 1550 degrees C for 30 h. The Nd3+:Y1.9La0.1O3 ceramics display uniform grains of about 50 mu m and high transparency. The highest transmittance of the ceramics reaches 67%. The strongest absorption peak is in the wavelength of 820 nm with absorption cross section of 2.48 x 10(-20) cm(2). The absorption is still high at LD wavelength 806 nm with absorption cross section of 1.78 x 10(-20) cm(2) and broad full width at half maximum (FWHM) of about 6.3 nm. The strongest emission peak was centered at 1078 nm with large stimulated emission cross section of 9.63 x 10(-20) cm(2) and broad FWHM of about 7.8 nm. The broad absorption and emission bandwidth of Nd3+:y(1.9)La(0.1)O(3) transparent ceramics are favorable to achieve the miniaturized LD pumping apparatus and ultrashort modelocked pulse laser output, respectively. (c) 2007 Elsevier B.V. All rights reserved.