862 resultados para large-scale network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, a high penetration level of Distributed Generations (DGs) has been observed in the Danish distribution systems, and even more DGs are foreseen to be present in the upcoming years. How to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. This master project is intended to develop a control architecture for studying purposes of distribution systems with large scale integration of solar power. As part of the EcoGrid EU Smart Grid project, it focuses on the system modelling and simulation of a Danish representative LV network located in Bornholm island. Regarding the control architecture, two types of reactive control techniques are implemented and compare. In addition, a network voltage control based on a tap changer transformer is tested. The optimized results after applying a genetic algorithm to five typical Danish domestic loads are lower power losses and voltage deviation using Q(U) control, specially with large consumptions. Finally, a communication and information exchange system is developed with the objective of regulating the reactive power and thereby, the network voltage remotely and real-time. Validation test of the simulated parameters are performed as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we study the properties of two large dynamic networks, the competition network of advertisers on the Google and Bing search engines and the dynamic network of friend relationships among avatars in the massively multiplayer online game (MMOG) Planetside 2. We are particularly interested in removal patterns in these networks. Our main finding is that in both of these networks the nodes which are most commonly removed are minor near isolated nodes. We also investigate the process of merging of two large networks using data captured during the merger of servers of Planetside 2. We found that the original network structures do not really merge but rather they get gradually replaced by newcomers not associated with the original structures. In the final part of the thesis we investigate the concept of motifs in the Barabási-Albert random graph. We establish some bounds on the number of motifs in this graph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies robustness against large-scale failures in communications networks. If failures are isolated, they usually go unnoticed by users thanks to recovery mechanisms. However, such mechanisms are not effective against large-scale multiple failures. Large-scale failures may cause huge economic loss. A key requirement towards devising mechanisms to lessen their impact is the ability to evaluate network robustness. This thesis focuses on multilayer networks featuring separated control and data planes. The majority of the existing measures of robustness are unable to capture the true service degradation in such a setting, because they rely on purely topological features. One of the major contributions of this thesis is a new measure of functional robustness. The failure dynamics is modeled from the perspective of epidemic spreading, for which a new epidemic model is proposed. Another contribution is a taxonomy of multiple, large-scale failures, adapted to the needs and usage of the field of networking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Where users are interacting in a distributed virtual environment, the actions of each user must be observed by peers with sufficient consistency and within a limited delay so as not to be detrimental to the interaction. The consistency control issue may be split into three parts: update control; consistent enactment and evolution of events; and causal consistency. The delay in the presentation of events, termed latency, is primarily dependent on the network propagation delay and the consistency control algorithms. The latency induced by the consistency control algorithm, in particular causal ordering, is proportional to the number of participants. This paper describes how the effect of network delays may be reduced and introduces a scalable solution that provides sufficient consistency control while minimising its effect on latency. The principles described have been developed at Reading over the past five years. Similar principles are now emerging in the simulation community through the HLA standard. This paper attempts to validate the suggested principles within the schema of distributed simulation and virtual environments and to compare and contrast with those described by the HLA definition documents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile ad hoc networks. This work proposes a fully distributed K-Means algorithm (EpidemicK-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is suitable for asynchronous networks of very large and extreme scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Solar HeatIntegration NEtwork (SHINE) is a European research school in which 13 PhDstudents in solar thermal technologies are funded by the EU Marie-Curie program.It has five PhD course modules as well as workshops and seminars dedicated to PhDstudents both within the project as well as outside of it. The SHINE researchactivities focus on large solar heating systems and new applications: ondistrict heating, industrial processes and new storage systems. The scope ofthis paper is on systems for district heating for which there are five PhDstudents, three at universities and two at companies. The PhD students allstarted during the early part of 2014 and their initial work has concentratedon literature studies and on setting up models and data collection to be usedfor validation purposes. The PhD students will complete their studies in2017-18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a technique for Large Scale Virtual Environments (LSVEs) partitioning in hexagon cells and using portal in the cell interfaces to reduce the number of messages on the network and the complexity of the virtual world. These environments usually demand a high volume of data that must be sent only to those users who needs the information [Greenhalgh, Benford 1997].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of a mathematical model to optimize the management and operation of the Brazilian hydrothermal system. The system consists of a large set of individual hydropower plants and a set of aggregated thermal plants. The energy generated in the system is interconnected by a transmission network so it can be transmitted to centers of consumption throughout the country. The optimization model offered is capable of handling different types of constraints, such as interbasin water transfers, water supply for various purposes, and environmental requirements. Its overall objective is to produce energy to meet the country's demand at a minimum cost. Called HIDROTERM, the model integrates a database with basic hydrological and technical information to run the optimization model, and provides an interface to manage the input and output data. The optimization model uses the General Algebraic Modeling System (GAMS) package and can invoke different linear as well as nonlinear programming solvers. The optimization model was applied to the Brazilian hydrothermal system, one of the largest in the world. The system is divided into four subsystems with 127 active hydropower plants. Preliminary results under different scenarios of inflow, demand, and installed capacity demonstrate the efficiency and utility of the model. From this and other case studies in Brazil, the results indicate that the methodology developed is suitable to different applications, such as planning operation, capacity expansion, and operational rule studies, and trade-off analysis among multiple water users. DOI: 10.1061/(ASCE)WR.1943-5452.0000149. (C) 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an observational study of the large-scale moisture transport over South America, with some analyses on its relation to subtropical rainfall. The concept of aerial rivers is proposed as a framework: it is an analogy between the main pathways of moisture flow in the atmosphere and surface rivers. Opposite to surface rivers, aerial rivers gain (lose) water through evaporation (precipitation). The magnitude of the vertically integrated moisture transport is discharge, and precipitable water is like the mass of the liquid column-multiplied by an equivalent speed it gives discharge. Trade wind flow into Amazonia, and the north/northwesterly flow to the subtropics, east of the Andes, are aerial rivers. Aerial lakes are the sections of a moisture pathway where the flow slows down and broadens, because of diffluence, and becomes deeper, with higher precipitable water. This is the case over Amazonia, downstream of the trade wind confluence. In the dry season, moisture from the aerial lake is transported northeastward, but weaker flow over southern Amazonia heads southward toward the subtropics. Southern Amazonia appears as a source of moisture to this flow. Aerial river discharge to the subtropics is comparable to that of the Amazon River. The variations of the amount of moisture coming from Amazonia have an important effect over the variability of discharge. Correlations between the flow from Amazonia and subtropical rainfall are not strong. However, some months within the set of dry seasons observed showed a strong increase (decrease) occurring together with an important increase (decrease) in subtropical rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biotic and abiotic phenological observations can be collected from continental to local spatial scale. Plant phenological observations may only be recorded wherever there is vegetation. Fog, snow and ice are available as phenological para-meters wherever they appear. The singularity of phenological observations is the possibility of spatial intensification to a microclimatic scale where the equipment of meteorological measurements is too expensive for intensive campaigning. The omnipresence of region-specific phenological parameters allows monitoring for a spatially much more detailed assessment of climate change than with weather data. We demonstrate this concept with phenological observations with the use of a special network in the Canton of Berne, Switzerland, with up to 600 observations sites (more than 1 to 10 km² of the inhabited area). Classic cartography, gridding, the integration into a Geographic Information System GIS and large-scale analysis are the steps to a detailed knowledge of topoclimatic conditions of a mountainous area. Examples of urban phenology provide other types of spatially detailed applications. Large potential in phenological mapping in future analyses lies in combining traditionally observed species-specific phenology with remotely sensed and modelled phenology that provide strong spatial information. This is a long history from cartographic intuition to algorithm-based representations of phenology.