922 resultados para large-eddy simulation
Resumo:
The effect of subgrid-scale (SGS) modeling on velocity (space-) time correlations is investigated in decaying isotropic turbulence. The performance of several SGS models is evaluated, which shows superiority of the dynamic Smagorinsky model used in conjunction with the multiscale large-eddy simulation (LES) procedure. Compared to the results of direct numerical simulation, LES is shown to underpredict the (un-normalized) correlation magnitude and slightly overpredict the decorrelation time scales. This can lead to inaccurate solutions in applications such as aeroacoustics. The underprediction of correlation functions is particularly severe for higher wavenumber modes which are swept by the most energetic modes. The classic sweeping hypothesis for stationary turbulence is generalized for decaying turbulence and used to analyze the observed discrepancies. Based on this analysis, the time correlations are determined by the wavenumber energy spectra and the sweeping velocity, which is the square root of the total energy. Hence, an accurate prediction of the instantaneous energy spectra is most critical to the accurate computation of time correlations. (C) 2004 American Institute of Physics.
Resumo:
The hybrid method of large eddy simulation (LES) and the Lighthill analogy is being developed to compute the sound radiated from turbulent flows. The results obtained from the hybrid method are often contaminated by the absence of small scales in LES, since the energy level of sound is much smaller than that of turbulent flows. Previous researches investigate the effects of subgrid sacle (SGS) eddies on the frequency spectra of sound radiated by isotropic turbulence and suggest a SGS noise model to represent the SGS contributions to the frequency spectra. Their investigations are conducted in physical space and are unavoidably influenced by boundary conditions. In this paper, we propose to perform such calculations in Fourier space so that the effects of boundary conditions can be correctly treated. Posteriori tests are carried out to investigate the SGS contribution to the sound. The results obtained recover the -7/2 law within certain wave-number ranges, but under-estimate the amplitudes of the frequency spectra. The reason for the underestimation is also discussed.
Resumo:
The recent application of large-eddy simulation (LES) to particle-laden turbulence requires that the LES with a subgrid scale (SGS) model could accurately predict particle distributions. Usually, a SGS particle model is used to recover the small-scale structures of velocity fields. In this study, we propose a rescaling technique to recover the effects of small-scale motions on the preferential concentration of inertial particles. The technique is used to simulate particle distribution in isotropic turbulence by LES and produce consistent results with direct numerical simulation (DNS). Key words: particle distribution, particle-laden turbulence, large-eddy simulation, subgrid scale model.