967 resultados para large deflections analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statically balanced compliant mechanisms require no holding force throughout their range of motion while maintaining the advantages of compliant mechanisms. In this paper, a postbuckled fixed-guided beam is proposed to provide the negative stiffness to balance the positive stiffness of a compliant mechanism. To that end, a curve decomposition modeling method is presented to simplify the large deflection analysis. The modeling method facilitates parametric design insight and elucidates key points on the force-deflection curve. Experimental results validate the analysis. Furthermore, static balancing with fixed-guided beams is demonstrated for a rectilinear proof-of-concept prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 48 d.o.f., four-noded quadrilateral laminated composite shell finite element is particularised to a sector finite element and is used for the large deformation analysis of circular composite laminated plates. The strain-displacement relationships for the sector element are obtained by reducing those of the quadrilateral shell finite element by substituting proper values for the geometric parameters. Subsequently, the linear and tangent stiffness matrices are formulated using conventional methods. The Newton-Raphson method is employed as the nonlinear solution technique. The computer code developed is validated by solving an isotropic case for which results are available in the literature. The method is then applied to solve problems of cylindrically orthotropic circular plates. Some of the results of cylindrically orthotropic case are compared with those available in the literature. Subsequently, application is made to the case of laminated composite circular plates having different lay-up schemes. The computer code can handle symmetric/unsymmetric lay-up schemes. The large displacement analysis is useful in estimating the damage in composite plates caused by low-velocity impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to present a position based tetrahedral finite element method of any order to accurately predict the mechanical behavior of solids constituted by functionally graded elastic materials and subjected to large displacements. The application of high-order elements makes it possible to overcome the volumetric and shear locking that appears in usual homogeneous isotropic situations or even in non-homogeneous cases developing small or large displacements. The use of parallel processing to improve the computational efficiency, allows employing high-order elements instead of low-order ones with reduced integration techniques or strain enhancements. The Green-Lagrange strain is adopted and the constitutive relation is the functionally graded Saint Venant-Kirchhoff law. The equilibrium is achieved by the minimum total potential energy principle. Examples of large displacement problems are presented and results confirm the locking free behavior of high-order elements for non-homogeneous materials. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10-5). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted. © The Author 2010. Published by Oxford University Press. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In elite sports, nearly all performances are captured on video. Despite the massive amounts of video that has been captured in this domain over the last 10-15 years, most of it remains in an 'unstructured' or 'raw' form, meaning it can only be viewed or manually annotated/tagged with higher-level event labels which is time consuming and subjective. As such, depending on the detail or depth of annotation, the value of the collected repositories of archived data is minimal as it does not lend itself to large-scale analysis and retrieval. One such example is swimming, where each race of a swimmer is captured on a camcorder and in-addition to the split-times (i.e., the time it takes for each lap), stroke rate and stroke-lengths are manually annotated. In this paper, we propose a vision-based system which effectively 'digitizes' a large collection of archived swimming races by estimating the location of the swimmer in each frame, as well as detecting the stroke rate. As the videos are captured from moving hand-held cameras which are located at different positions and angles, we show our hierarchical-based approach to tracking the swimmer and their different parts is robust to these issues and allows us to accurately estimate the swimmer location and stroke rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction between large deflections, rotation effects and unsteady aerodynamics makes the dynamic analysis of rotating and flapping wing a nonlinear aeroelastic problem. This problem is governed by nonlinear periodic partial differential equations whose solution is needed to calculate the response and loads acting on vehicles using rotary or flapping wings for lift generation. We look at three important problems in this paper. The first problem shows the effect of nonlinear phenomenon coming from piezoelectric actuators used for helicopter vibration control. The second problem looks at the propagation on material uncertainty on the nonlinear response, vibration and aeroelastic stability of a composite helicopter rotor. The third problem considers the use of piezoelectric actuators for generating large motions in a dragonfly inspired flapping wing. These problems provide interesting insights into nonlinear aeroelasticity and show the likelihood of surprising phenomenon which needs to be considered during the design of rotary and flapping wing vehicle

Relevância:

90.00% 90.00%

Publicador:

Resumo:

STEEL, the Caltech created nonlinear large displacement analysis software, is currently used by a large number of researchers at Caltech. However, due to its complexity, lack of visualization tools (such as pre- and post-processing capabilities) rapid creation and analysis of models using this software was difficult. SteelConverter was created as a means to facilitate model creation through the use of the industry standard finite element solver ETABS. This software allows users to create models in ETABS and intelligently convert model information such as geometry, loading, releases, fixity, etc., into a format that STEEL understands. Models that would take several days to create and verify now take several hours or less. The productivity of the researcher as well as the level of confidence in the model being analyzed is greatly increased.

It has always been a major goal of Caltech to spread the knowledge created here to other universities. However, due to the complexity of STEEL it was difficult for researchers or engineers from other universities to conduct analyses. While SteelConverter did help researchers at Caltech improve their research, sending SteelConverter and its documentation to other universities was less than ideal. Issues of version control, individual computer requirements, and the difficulty of releasing updates made a more centralized solution preferred. This is where the idea for Caltech VirtualShaker was born. Through the creation of a centralized website where users could log in, submit, analyze, and process models in the cloud, all of the major concerns associated with the utilization of SteelConverter were eliminated. Caltech VirtualShaker allows users to create profiles where defaults associated with their most commonly run models are saved, and allows them to submit multiple jobs to an online virtual server to be analyzed and post-processed. The creation of this website not only allowed for more rapid distribution of this tool, but also created a means for engineers and researchers with no access to powerful computer clusters to run computationally intensive analyses without the excessive cost of building and maintaining a computer cluster.

In order to increase confidence in the use of STEEL as an analysis system, as well as verify the conversion tools, a series of comparisons were done between STEEL and ETABS. Six models of increasing complexity, ranging from a cantilever column to a twenty-story moment frame, were analyzed to determine the ability of STEEL to accurately calculate basic model properties such as elastic stiffness and damping through a free vibration analysis as well as more complex structural properties such as overall structural capacity through a pushover analysis. These analyses showed a very strong agreement between the two softwares on every aspect of each analysis. However, these analyses also showed the ability of the STEEL analysis algorithm to converge at significantly larger drifts than ETABS when using the more computationally expensive and structurally realistic fiber hinges. Following the ETABS analysis, it was decided to repeat the comparisons in a software more capable of conducting highly nonlinear analysis, called Perform. These analyses again showed a very strong agreement between the two softwares in every aspect of each analysis through instability. However, due to some limitations in Perform, free vibration analyses for the three story one bay chevron brace frame, two bay chevron brace frame, and twenty story moment frame could not be conducted. With the current trend towards ultimate capacity analysis, the ability to use fiber based models allows engineers to gain a better understanding of a building’s behavior under these extreme load scenarios.

Following this, a final study was done on Hall’s U20 structure [1] where the structure was analyzed in all three softwares and their results compared. The pushover curves from each software were compared and the differences caused by variations in software implementation explained. From this, conclusions can be drawn on the effectiveness of each analysis tool when attempting to analyze structures through the point of geometric instability. The analyses show that while ETABS was capable of accurately determining the elastic stiffness of the model, following the onset of inelastic behavior the analysis tool failed to converge. However, for the small number of time steps the ETABS analysis was converging, its results exactly matched those of STEEL, leading to the conclusion that ETABS is not an appropriate analysis package for analyzing a structure through the point of collapse when using fiber elements throughout the model. The analyses also showed that while Perform was capable of calculating the response of the structure accurately, restrictions in the material model resulted in a pushover curve that did not match that of STEEL exactly, particularly post collapse. However, such problems could be alleviated by choosing a more simplistic material model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop models for large scale analysis of the stock. This research proposes a probabilistic, engineering-based, bottom-up model to address these issues. In a recent study we classified London's non-domestic buildings based on the service they provide, such as offices, retail premise, and schools, and proposed the creation of one probabilistic representational model per building type. This paper investigates techniques for the development of such models. The representational model is a statistical surrogate of a dynamic energy simulation (ES) model. We first identify the main parameters affecting energy consumption in a particular building sector/type by using sampling-based global sensitivity analysis methods, and then generate statistical surrogate models of the dynamic ES model within the dominant model parameters. Given a sample of actual energy consumption for that sector, we use the surrogate model to infer the distribution of model parameters by inverse analysis. The inferred distributions of input parameters are able to quantify the relative benefits of alternative energy saving measures on an entire building sector with requisite quantification of uncertainties. Secondary school buildings are used for illustrating the application of this probabilistic method. © 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Given the role of uncoupling protein 2 (UCP2) in the accumulation of fat in the hepatocytes and in the enhancement of protective mechanisms in acute ethanol intake, we hypothesised that UCP2 polymorphisms are likely to cause liver disease through their interactions with obesity and alcohol intake. To test this hypothesis, we investigated the interaction between tagging polymorphisms in the UCP2 gene (rs2306819, rs599277 and rs659366), alcohol intake and obesity traits such as BMI and waist circumference (WC) on alanine aminotransferase (ALT) and gamma glutamyl transferase (GGT) in a large meta-analysis of data sets from three populations (n=20 242). DESIGN AND METHODS: The study populations included the Northern Finland Birth Cohort 1966 (n=4996), Netherlands Study of Depression and Anxiety (n=1883) and LifeLines Cohort Study (n=13 363). Interactions between the polymorphisms and obesity and alcohol intake on dichotomised ALT and GGT levels were assessed using logistic regression and the likelihood ratio test. RESULTS: In the meta-analysis of the three cohorts, none of the three UCP2 polymorphisms were associated with GGT or ALT levels. There was no evidence for interaction between the polymorphisms and alcohol intake on GGT and ALT levels. In contrast, the association of WC and BMI with GGT levels varied by rs659366 genotype (Pinteraction=0.03 and 0.007, respectively; adjusted for age, gender, high alcohol intake, diabetes, hypertension and serum lipid concentrations). CONCLUSION: In conclusion, our findings in 20 242 individuals suggest that UCP2 gene polymorphisms may cause liver dysfunction through the interaction with body fat rather than alcohol intake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Children represent the most vulnerable members of society, and as such provide valuable insight into past lifeways. Adverse environmental conditions translate more readily into the osteological record of children, making them primary evidence for the investigation of ill-health in the past. To date, most information on growing up in Roman Britain has been based on the Classical literature, or discussed in palaeopathological studies with a regional focus, e.g. Dorset or Durnovaria. Thus, the lifestyles and everyday realities of children throughout Britannia remained largely unknown. This study sets out to fill this gap by providing the first large scale analysis of Romano-British children from town and country. The palaeopathological analysis of 1643 non-adult (0-17 years) skeletons, compiled from the literature (N=690) and primary osteological analysis (N=953), from 27 urban and rural settlements has highlighted diverse patterns in non-adult mortality and morbidity. The distribution of ages-at-death suggest that older children and adolescents migrated from country to town, possibly for commencing their working lives. True prevalence rates suggest that caries (1.8%) and enamel hypoplasia (11.4%) were more common in children from major urban towns, whereas children in the countryside displayed higher frequencies of scurvy (6.9%), cribra orbitalia (27.7%), porotic hyperostosis (6.2%) and endocranial lesions (10.9%). Social inequality in late Roman Britain may have been the driving force behind these urban-rural dichotomies. The results may point to exploitation of the peasantry on the one hand, and higher status of the urban population as a more ‘Romanised’ group on the other. Comparison with Iron Age and post-medieval non-adults also demonstrated a decline in health in the Roman period, with some levels of ill-health, particularly in the rural children, similar to those from post-medieval London. This research provides the most comprehensive study of non-adult morbidity and mortality in Roman Britain to date. It has provided new insights into Romano-British lifeways and presents suggestions for further work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A finite element study based on 1D beam element model is performed in order to investigate the mechanical behavior of an elasto-plastic beam loaded in axial compression over its buckling limit. The mode of loading is related to the damage of truss-cored beams in truss-cored laminates. The analysis takes into account the effects of geometry and material properties. The results of the FEM analysis are used for developing a simple mechanical model based on the basic Euler-Bernoulli beam theory and accounts for the beam compressibility. The model uses phenomenological functions containing parameters related to the basic material and geometrical properties. The presented model is developed in the form of closed solution which does not require complex numerical methods or extensive parametric studies. Predictions of the compressive stiffness degradation of truss-cored composites are made with the proposed model and compared with the results of FEM simulations. The error of the stiffness prediction with respect to the FEM results is within 10% over a 5 fold range of stiffness.