953 resultados para land use capacity classes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to specify the meaning of gentrification in rapidly peri-urbanising metropolitan regions in the context of Indonesia’s rapid transition to decentralisation and democracy. It discusses a case study of conflict over an environmental revitalisation project in a peri-urban area of Bandung City. The analysis focuses on the political processes, tactics and strategies supporting and opposing peri-urban gentrification and their consequences. The analysis illustrates how these political dynamics mediate the interaction between the movement of capital and the spatial reorganisation of social classes. It is argued that in the context of a peri-urbanising metropolis, gentrification needs to be narrated less in terms of class-based neighbourhood succession and more in terms of competing cross-class coalitions emerging at local and regional levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Judged by their negative nutrient balances, low soil cover and low productivity, the predominant agro-pastoral farming systems in the Sudano-Sahelian zone of West Africa are highly unsustainable for crop production intensification. With kaolinite as the main clay type, the cation exchange capacity of the soils in this region, often less than 1 cmol_c kg^-1 soil, depends heavily on the organic carbon (Corg) content. However, due to low carbon sequestration and to the microbe, termite and temperature-induced rapid turnover rates of organic material in the present land-use systems, Corg contents of the topsoil are very low, ranging between 1 and 8 g kg^-1 in most soils. For sustainable food production, the availability of phosphorus (P) and nitrogen (N) has to be increased considerably in combination with an improvement in soil physical properties. Therefore, the adoption of innovative management options that help to stop or even reverse the decline in Corg typically observed after cultivating bush or rangeland is of utmost importance. To maintain food production for a rapidly growing population, targeted applications of mineral fertilisers and the effective recycling of organic amendments as crop residues and manure are essential. Any increase in soil cover has large effects in reducing topsoil erosion by wind and water and favours the accumulation of wind-blown dust high in bases which in turn improves P availability. In the future decision support systems, based on GIS, modelling and simulation should be used to combine (i) available fertiliser response data from on-station and on-farm research, (ii) results on soil productivity restoration with the application of mineral and organic amendments and (iii) our present understanding of the cause-effect relationships governing the prevailing soil degradation processes. This will help to predict the effectiveness of regionally differentiated soil fertility management approaches to maintain or even increase soil Corg levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use has become a force of global importance, considering that 34% of the Earth’s ice-free surface was covered by croplands or pastures in 2000. The expected increase in global human population together with eminent climate change and associated search for energy sources other than fossil fuels can, through land-use and land-cover changes (LUCC), increase the pressure on nature’s resources, further degrade ecosystem services, and disrupt other planetary systems of key importance to humanity. This thesis presents four modeling studies on the interplay between LUCC, increased production of biofuels and climate change in four selected world regions. In the first study case two new crop types (sugarcane and jatropha) are parameterized in the LPJ for managed Lands dynamic global vegetation model for calculation of their potential productivity. Country-wide spatial variation in the yields of sugarcane and jatropha incurs into substantially different land requirements to meet the biofuel production targets for 2015 in Brazil and India, depending on the location of plantations. Particularly the average land requirements for jatropha in India are considerably higher than previously estimated. These findings indicate that crop zoning is important to avoid excessive LUCC. In the second study case the LandSHIFT model of land-use and land-cover changes is combined with life cycle assessments to investigate the occurrence and extent of biofuel-driven indirect land-use changes (ILUC) in Brazil by 2020. The results show that Brazilian biofuels can indeed cause considerable ILUC, especially by pushing the rangeland frontier into the Amazonian forests. The carbon debt caused by such ILUC would result in no carbon savings (from using plant-based ethanol and biodiesel instead of fossil fuels) before 44 years for sugarcane ethanol and 246 years for soybean biodiesel. The intensification of livestock grazing could avoid such ILUC. We argue that such an intensification of livestock should be supported by the Brazilian biofuel sector, based on the sector’s own interest in minimizing carbon emissions. In the third study there is the development of a new method for crop allocation in LandSHIFT, as influenced by the occurrence and capacity of specific infrastructure units. The method is exemplarily applied in a first assessment of the potential availability of land for biogas production in Germany. The results indicate that Germany has enough land to fulfill virtually all (90 to 98%) its current biogas plant capacity with only cultivated feedstocks. Biogas plants located in South and Southwestern (North and Northeastern) Germany might face more (less) difficulties to fulfill their capacities with cultivated feedstocks, considering that feedstock transport distance to plants is a crucial issue for biogas production. In the fourth study an adapted version of LandSHIFT is used to assess the impacts of contrasting scenarios of climate change and conservation targets on land use in the Brazilian Amazon. Model results show that severe climate change in some regions by 2050 can shift the deforestation frontier to areas that would experience low levels of human intervention under mild climate change (such as the western Amazon forests or parts of the Cerrado savannas). Halting deforestation of the Amazon and of the Brazilian Cerrado would require either a reduction in the production of meat or an intensification of livestock grazing in the region. Such findings point out the need for an integrated/multicisciplinary plan for adaptation to climate change in the Amazon. The overall conclusions of this thesis are that (i) biofuels must be analyzed and planned carefully in order to effectively reduce carbon emissions; (ii) climate change can have considerable impacts on the location and extent of LUCC; and (iii) intensification of grazing livestock represents a promising venue for minimizing the impacts of future land-use and land-cover changes in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses historic records of agricultural land use and management for England and Wales from 1931 and 1991 and uses export coefficient modelling to hindcast the impact of these practices on the rates of diffuse nitrogen (N) and phosphorus (P) export to water bodies for each of the major geo-climatic regions of England and Wales. Key trends indicate the importance of animal agriculture as a contributor to the total diffuse agricultural nutrient loading on waters, and the need to bring these sources under control if conditions suitable for sustaining 'Good Ecological Status' under the Water Framework Directive are to be generated. The analysis highlights the importance of measuring changes in nutrient loading in relation to the catchment-specific baseline state for different water bodies. The approach is also used to forecast the likely impact of broad regional scale scenarios on nutrient export to waters and highlights the need to take sensitive land out of production, introduce ceilings on fertilizer use and stocking densities, and controls on agricultural practice in higher risk areas where intensive agriculture is combined with a low intrinsic nutrient retention capacity, although the uncertainties associated with the modelling applied at this scale should be taken into account in the interpretation of model output. The paper advocates the need for a two-tiered approach to nutrient management, combining broad regional policies with targeted management in high risk areas at the catchment and farm scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United States and the European Union have set targets for biofuel production to decrease reliance on fossil fuels and to reduce fossil carbon emissions. Attainment of biofuel targets d6pends upon policy and infrastructure development but also on production of suitable raw materials. Production of relevant crops relies on the decisions that farmers make in their economic and political environment. We need to identify any farmer-related barriers to biofuel production and to determine whether novel policy and technology are required to meet targets. These aspects of the emerging biofuel industry are relevant across international barriers and have notyet been addressed quantitatively. We describe a case study from the UK of farmers' intentions toward producing two biofuel crops for which refining capacity either exists or is under construction. Given farmers' intentions, current land use, and conversion efficiency, we estimate potential biofuel production. These estimates indicate that EU targets are not achievable using domestically grown raw materials without policy intervention, use of alternative feedstocks, and either significant improvements in processing efficiency or largescale changes in land use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to plan for the best use of public land at a regional scale the determination of an appropriate regional boundary is important for ecological, resource use and recreational reasons. The study area for the Victorian Environmental Assessment Council's (VEAC) River Red Gum Forests Investigation incorporated bioregional boundaries, modelled pre- I750 vegetation distribution, recent public land use investigations, and the distribution of public land. This paper outlines how ecological attributes and past land use studies were used to inform the boundary for this major study of public land along the Murray River in northern Victoria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os conflitos de uso são determinados pelas ocupações inadequadas do solo, como é o caso de ocupação do solo dentro de áreas de preservação permanente. O presente trabalho teve como objetivos determinar as classes de uso do solo e se há conflitos dentro de áreas de preservação permanente ao longo da rede de drenagem da microbacia do Ribeirão Água Fria, município de Bofete (SP). Situa-se geograficamente entre as coordenadas: 48°09'30 a 48°18'30 de longitude WGr., 22°58'30 a 23°04'30 de latitude sul com uma área de 15.242,84 ha. O mapa de uso do solo foi elaborado por meio da interpretação diretamente na tela do computador de imagem digital de satélite. Nos dados orbitais, a área de estudo está inserida no quadrante A, da imagem TM/Landsat-5, órbita 220, ponto 76, passagem de 8/09/2007. O Sistema de Informação Geográfica empregado foi o Cartalinx. As áreas de conflito da microbacia foram obtidas a partir do cruzamento entre os mapas de uso do solo e de APPs. Os resultados permitiram concluir que mais da metade da área (51,09%) está ocupada por pastagens, reflexo de solos arenosos e de baixa fertilidade. Constatou-se, ainda, que apesar de quase metade da microbacia estar coberta com algum tipo de vegetação (48,78% de mata natural/reflorestamento), possui aproximadamente um terço das áreas de preservação permanente utilizadas inadequadamente por pastagens (88,15%), reflorestamento (10,42%) e solo exposto (1,43%), totalizando 343,07 ha de áreas conflitantes em um total de 993,26 ha de APPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil e Ambiental - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this note is to describe preliminary results on assessment of land use by cattle, obtained in a pilot study using Geographic Information System (GIS). The research was carried out on a semi-natural pasture in Sweden, where the geographic positions of one cow were recorded during 25 consecutive days during summer. The cow, wearing a GPS collar, was integrated in a herd of 53 Hereford cattle. Each location point registered for the animal was considered as a sampling unit (N=3,097). The spatial distribution of ground declivity, water sources, cattle tracks, and classes of woody vegetation cover (forest, grassland with trees and open grassland) were recorded. The storage, processing and data analysis were carried out using the Idrisi and GS+ softwares. Three occupation zones were identified in function of the variation in the space used by the animal, which were occupied in a cyclical pattern; with the animal moving from one zone to another in cycles of five days. It was also clear that the cattle distribution in the area was neither random nor uniform, and it was affected by environmental characteristics that act as conditioners on its distribution. These preliminary results suggest that definition of zones of occupation and the environmental conditioners are promising tools to understand the land use by cattle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O aumento da produção agrícola na Amazônia brasileira tem ocorrido devido, em grande parte, à expansão da fronteira agrícola, utilizando áreas já antropizadas ou avançando sobre a vegetação primária. Ao mesmo tempo, os sistemas agrícolas, na pequena produção, continuam utilizando o fogo no preparo da área, o que leva à perda da capacidade produtiva dos solos em curto espaço de tempo, forçando a abertura de novas áreas. Este trabalho avaliou o efeito de métodos de preparo do solo e tempo de pousio que envolvem queima e trituração da vegetação, com permanência na superfície ou incorporada ao solo, com ou sem adubação mineral, em duas épocas do ano sobre os atributos químicos e biológicos do solo. O experimento foi instalado em 1995 em um Latossolo Amarelo do campo experimental da Embrapa Amazônia Oriental, no nordeste do Estado do Pará. O delineamento experimental foi em blocos casualizados, arranjados em esquema fatorial 2 x 6, sendo dois sistemas de manejo e seis tratamentos, estudados em duas épocas de coleta. Os sistemas de manejo envolveram as culturas de arroz (Oriza sativa), seguido de feijão-caupi (Vigna unguiculata) e mandioca (Manihot esculenta). Um sistema constou de dois ciclos de cultivo seguidos, deixando em pousio por três anos; e o outro, de um ciclo de cultivo, deixando em pousio por três anos. Os tratamentos foram: corte e queima da vegetação, com adubação NPK (Q+NPK); corte e queima da vegetação, sem adubação NPK (Q-NPK); corte e trituração da vegetação, deixando-a na superfície do solo, com adubação NPK (C+NPK); corte e trituração da vegetação, deixando-a na superfície do solo, sem adubação NPK (C-NPK); corte e trituração da vegetação, com incorporação e com adubação NPK (I+NPK); e corte e trituração da vegetação, com incorporação e sem adubação NPK (I-NPK). As coletas de solo foram realizadas na estação mais chuvosa (abril de 2006) e na menos chuvosa (setembro de 2006), na profundidade de 0,0-0,1 m. Em cada parcela, foram coletadas 10 amostras simples para compor uma amostra composta. O sistema de manejo mais intensivo apresentou maiores teores de C microbiano (Cmic) e N microbiano (Nmic), ao passo que o sistema menos intensivo mostrou maio teor de C orgânico. Os tratamentos que apresentaram maior teor de Cmic e Nmic foram aqueles em que houve corte, trituração e deposição da biomassa na superfície do solo. Os atributos químicos nos dois sistemas de manejo encontram-se em faixas que enquadram os solos como de baixa fertilidade; no entanto, P e K (no período chuvoso) foram mais elevados no sistema de manejo menos intensivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic Forest is one of the most threatened tropical biomes, with much of the standing forest in small (less than 50 ha), disturbed and isolated patches. The pattern of land-use and land-cover change (LULCC) which has resulted in this critical scenario has not yet been fully investigated. Here, we describe the LULCC in three Atlantic Forest fragmented landscapes (Sao Paulo, Brazil) between 1960-1980s and 1980-2000s. The three studied landscapes differ in the current proportion of forest cover, having 10%, 30% and 50% respectively. Between the 1960s and 1980s. forest cover of two landscapes was reduced while the forest cover in the third landscape increased slightly. The opposite trend was observed between the 1980s and 2000s: forest regeneration was greater than deforestation at the landscapes with 10% and 50% of forest cover and, as a consequence, forest cover increased. By contrast, the percentage of forest cover at the landscape with 30% of forest cover was drastically reduced between the 1980s and 2000s. LULCC deviated from a random trajectory, were not constant through time in two study landscapes and were not constant across space in a given time period. This landscape dynamism in single locations over small temporal scales is a key factor to be considered in models of LULCC to accurately simulate future changes for the Atlantic Forest. In general, forest patches became more isolated when deforestation was greater than forest regeneration and became more connected when forest regeneration was greater than deforestation. As a result of the dynamic experienced by the study landscapes, individual forest patches currently consist of a mosaic of different forest age classes which is likely to impact bio-diversity. Furthermore, landscape dynamics suggests the beginning of a forest transition in some Atlantic Forest regions, what could be of great importance for biodiversity conservation due to the potential effects of young secondary forests in reducing forest isolation and maintaining a significant amount of the original biodiversity. (C) 2012 Elsevier B.V. All rights reserved.