946 resultados para lability of metal species
Resumo:
Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.
Resumo:
Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.
Resumo:
We have analyzed the relative energy of nonmagnetic and magnetic low-lying electronic states of Ni atoms adsorbed on regular and defective sites of the MgO(001) surface. To this end cluster and periodic surface models are used within density functional theory. For Ni atoms adsorbed on oxygen vacancies at low coverage, the interaction energy between the metal and the support is much larger than on regular sites. Strong bonding results in a diamagnetic adsorbed species and the energy required to reach the high-spin state increases. Moreover, a correlation appears between the low-spin to high-spin energy difference and the interaction energy hypothesizing that it is possible to prepare the surface to tune the high-spin to low-spin energy difference. Magnetic properties of adsorbed thin films obtained upon increasing coverage are more difficult to interpret. This is because the metallic bond is readily formed and dominates over the effect of the atoms directly bound to the vacancy.
Resumo:
Ecological indicators are taxa that are affected by, and indicate effects of, anthropogenic environmental stress or disturbance on ecosystems. There is evidence that some species of soil macrofauna (i.e. diameter > 2 min) constitute valuable biological indicators of certain types of soil perturbations. This study aims to determine which level of taxonomic resolution, (species, family or ecological group) is the best to identify indicator of soil disturbance. Macrofauna were sampled in a set of sites encompassing different land-use systems (e.g. forests, pastures, crops) and different levels of pollution. Indicator taxa were sought using the IndVal index proposed by Dufrene and Legendre [Dufrene, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecological Monographs 67, 345-3661. This approach is based on a hierarchical typology of sites. The index value changes along the typology and decreases (increases) for generalist (specialist) faunal units (species, families or ecological groups). Of the 327 morphospecies recorded, 19 were significantly associated with a site type or a group of sites (5.8%). Similarly, species were aggregated to form 59 families among which 17 (28.8%) displayed a significant indicator value. Gathering species into 28 broad ecological assemblages led to 14 indicator groups (50%). Beyond the simple proportion of units having significant association with a given level of the site typology, the proportion of specialist and generalist groups changed dramatically when the level of taxonomic resolution was altered. At the species level 84% of the indicator units were specialist, whereas this proportion decreased to 70 and 43% when families and ecological groups were considered. Because specialist groups are the most interesting type of indicators either in terms of conservation or for management purposes we come to the conclusion that the species level is the most accurate taxonomic level in bioindication studies although it requires a high amount of labour and operator knowledge and is time-consuming. (c) 2005 Published by Elsevier Ltd.
Resumo:
We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site ( Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 mug g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic ( soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic ( surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant'' (e.g., Ceratophysella denticulata) and metal "sensitive'' (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 mug g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition("keystone species'') can be greatly reduced in numbers by pollution.
Resumo:
We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site ( Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 mug g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic ( soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic ( surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant'' (e.g., Ceratophysella denticulata) and metal "sensitive'' (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 mug g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition("keystone species'') can be greatly reduced in numbers by pollution.
Resumo:
Metal organic chemical vapour deposition technique (MOCVD) has been used to immobilise Os species onto the internal porous structure of MCM-41. Evidence suggests that volatile Os-3(CO)(12) cluster reacts with surface silanol groups of the MCM-41 via an oxidative addition reaction to yield a trinuclear HOs3(CO)(10)(OSi-) surface species. After heat treatment in air or at their very low surface coverage, these triangular sites break up to partially oxidised mononuclear surface species. In the presence of tert-butyl hydroperoxide (TBHP) as an oxidant, we demonstrate that the mononuclear species form extremely active species that catalyse the oxidation of trans-stilbene selectively to the corresponding epoxide. By carefully controlling the parameters of the MOCVD method (loading and calcination temperature), we report a new class of optimised MCM-41 porous heterogeneous catalysts carrying isolated but active Os sites for the selective oxidation of trans-stilbene in liquid phase. The reaction selectivity of the solid supported Os is apparently higher than the soluble homogeneous Os-3(CO)(12) cluster. It is envisaged that our solid supported catalysts not only facilitate separation from products but also offer an excellent utilisation of Os for catalysis. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.
Resumo:
The aim of the present work was to carry out experimental comparison between humic substances (HS) and representative α-amino acids (methionine, methionine sulfoxide and cysteine hydrochloride) in relation to the complexation of biologically active trace elements (Al, Cu, Pb, Mn, Zn, Cd and Ni). A mobile time-controlled tangential-flow UF technique was applied to differentiate between HS-metal and α-aminoacids-metal complexes. Metal determinations were conventionally carried out using a ICP-OES. The results showed that HS may be considered as a selective complexing agents with higher metal bonding capability in relation to Al, Cu and Pb, the fact that may be clinically important.
Resumo:
In this study, we isolated eight copper-resistant bacteria from Torch Lake sediment contaminated by copper mine tailings (stamp sand). Sequence analysis of gyrB and rpoD genes revealed that these organisms are closer to various Pseudomonas species. These eight bacterial isolates were also resistant to zinc, cesium, lead, arsenate and mercury. Further characterization showed that all the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. Genes involved in copper resistance of Pseudomonas sp. TLC 6-6.5-4 was analyzed by transposon mutational analysis. Two copper sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trp A gene (tryptophan synthase alpha subunit); CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analysis were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. The effect of different bacterial inoculation methods on plant growth, copper uptake and soil enzyme activities was investigated. Four different delivery methods were used including soil inoculation (before or after plant emergence), seed coating and root dipping. Soil inoculation before sowing seeds and coating seeds with PGPB led to better growth of maize, higher copper uptake and an increase in soil invertase and dehydrogenase activities. Proteomic and metabolomic analyses were performed to investigate the effect of bacterial inoculation on maize grown in normal soil and stamp sand. Our results revealed that bacterial inoculation led to environment-dependent effects on maize proteome and metabolome.
Resumo:
A Cd2+-selective vibrating microelectrode was constructed using a neutral carrier-based Cd ionophore to investigate ion-transport processes along the roots of wheat (Triticum aestivum L.) and two species of Thlaspi, one a Zn/Cd hyperaccumulator and the other a related nonaccumulator. In simple Cd(NO3)2 solutions, the electrode exhibited a Nernstian response in solutions with Cd2+ activities as low as 50 nm. Addition of Ca2+ to the calibration solutions did not influence the slope of the calibration curve but reduced the detection limit to a solution activity of 1 μm Cd2+. Addition of high concentrations of K+ and Mg2+ to the calibration solution to mimic the ionic composition of the cytoplasm affected neither the slope nor the sensitivity of the electrode, demonstrating the pH-insensitive electrode's potential for intracellular investigations. The electrode was assayed for selectivity and was shown to be at least 1000 times more selective for Cd2+ than for any of those potentially interfering ions tested. Flux measurements along the roots of the two Thlaspi species showed no differences in the pattern or the magnitude of Cd2+ uptake within the time frame considered. The Cd2+-selective microelectrode will permit detailed investigations of heavy-metal ion transport in plant roots, especially in the area of phytoremediation.
Resumo:
Abandoned hardrock mines and the resulting Acid Mine Drainage (AMD) are a source of vast, environmental degradation that are toxic threats to plants, animals, and humans. Cadmium (Cd) and lead (Pb) are metal contaminants often found in AMD. In my mine outwash water samples, cadmium and lead concentrations were 19 and 160 times greater than concentrations in control waterways, and 300 and 40 times greater than EPA Aquatic Life Use water quality standards, respectively. I tested the phytoremediation characteristics of three montane willows native to the Rocky Mountains: Salix drummondiana, S. monticola, and S. planifolia. I tested the willows’ accumulation and tolerance characteristics of cadmium and lead contamination. I found that S. drummondiana accumulated more cadmium in stems than both S. monticola and S. planifolia, and that all three willow species accumulated similar concentrations of lead. I found similar trends for leaf accumulation. I also found that S. monticola had a greater growth and tolerance to the lower lead concentrations than high lead concentrations in addition to containing higher field stem concentrations of lead than S. planifolia. Salix planifolia contained nearly 2.5 times greater concentrations of cadmium in field stems than S. drummondiana. Based on my results, S. drummondiana could aid in aboveground accumulation of cadmium polluted watersheds, and S. monticola could aid in aboveground accumulation and tolerance of lead pollution.
Resumo:
This study aims to investigate the pyrolysis behaviour of metal-contaminated wood and the combustion properties of char derived from wood pyrolysis. Seven metals (Na, Mg, Ca, Zn, Cd, Pb and Fe(III)) were introduced to willow in cation form by ion-exchange and the thermal behaviour of demineralised samples and samples with additional ash were also investigated. The results show that the char yield increased from 21% to 24-28% and levoglucosan yield in vapour phase decreased from 88% to 62-29% after the addition of inorganic compounds, even though the metal binding capacity of wood varied from one metal ion to another. While char yield seems to be effected mainly by the concentration of the metal ions, levoglucosan yield was more dependent on the ionic species especially when sodium ions were present. When combustion experiments were carried out with char made of the metal enriched wood, two consecutive steps were observed, both effected by the presence of inorganic compounds. The first step was identified as the release and combustion of volatiles, while the second peak of the burning profile is the actual combustion of the fixed carbon. The burnout temperatures, estimated ignition indices and the conversion indicate that the type and not the amount of metal ions were the determining factors during the second step of combustion. © 2012 Published by Elsevier B.V.