914 resultados para lEaf nutrient


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O aproveitamento do nitrogênio pelo feijoeiro é dependende da fonte, dose e época de aplicação. Com o objetivo de se avaliar o efeito de fontes e épocas de aplicação de N sobre feijoeiro cultivado em sistema plantio direto, desenvolveu-se o presente trabalho, no município de Selvíria (MS), em 2006 e 2007, com os tratamentos dispostos em delineamento de blocos casualizados, em esquema fatorial 3x6, com quatro repetições. Foram avaliadas fontes de N (ureia, entec e sulfato de amônio) e épocas de aplicação (testemunha - sem N, semeadura, estádio de desenvolvimento V3, estádio de desenvolvimento V4-5, 1/3 semeadura + 2/3 estádio V3 e 1/3 semeadura + 2/3 estádio V4-5). As fontes de N tiveram influência semelhante sobre a produtividade do feijoeiro, afetando apenas o teor de N foliar, em 2006, sendo que a utilização de entec proporcionou concentrações do nutriente, nas folhas, equivalentes às da ureia. A aplicação de todo o N na semeadura afetou a população inicial e final de plantas, em 2006, sendo que o mesmo não foi observado em 2007. As épocas de aplicação não influenciaram na produtividade de grãos da cultura, em ambos os anos de cultivo, porém, em 2006, a adubação nitrogenada incrementou a produtividade em mais de 100%, em média, independentemente da época de aplicação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coffee (Coffea arabica L.) plants were grown in small (3-L), medium (10-L) and large (24-L) pots for 115 or 165 d after transplanting (DAT), which allowed different degrees of root restriction. Effects of altered source : sink ratio were evaluated in order to explore possible stomatal and non-stomatal mechanisms of photosynthetic down-regulation. Increasing root restriction brought about large and general reductions in plant growth associated with a rising root : shoot ratio. Treatments did not affect leaf water potential or leaf nutrient status, with the exception of N content, which dropped significantly with increasing root restriction even though an adequate N supply was available. Photosynthesis was severely reduced when plants were grown in small pots; this was largely associated with non-stomatal factors, such as decreased Rubisco activity. At 165DAT contents of hexose, sucrose, and amino acids decreased in plants grown in smaller pots, while those of starch and hexose-P increased in plants grown in smaller pots. Photosynthetic rates were negatively correlated with the ratio of hexose to free amino acids, but not with hexose content. Activities of acid invertase, sucrose synthase, sucrose-P synthase, fructose-1,6- bisphosphatase, ADP-glucose pyrophosphorylase, starch phosphorylase, glyceraldehyde-3-P dehydrogenase, PPi : fructose-6-P 1-phosphotransferase and NADP : glyceraldehyde-3-P dehydrogenase all decreased with severe root restriction. Glycerate-3-P : Pi and glucose-6-P : fructose-6-P ratios decreased accordingly. Photosynthetic down-regulation was unlikely to have been associated directly with an end-product limitation, but rather with decreases in Rubisco. Such a down-regulation was largely a result of N deficiency caused by growing coffee plants in small pots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article addresses the establishment of integrated diagnostics and recommendation system (DRIS) standards for irrigated bean crops (Phaseolus vulgaris) and compares leaf concentrations and productivity in low- and high-productivity populations. The work was carried out in Santa Fe de Goias, Goias State, Brazil, in the agricultural years 1999/2000 and 2000/2001. For the nutritional diagnosis, leaf samples were collected, and leaf concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) were established in 100 commercial bean crops. A database was set up listing the leaf nutrient content and the respective productivities, subdivided into two subpopulations, high and low productivity, using a bean yield value of 3000 kg ha-1 to separate these subpopulations. Sufficiency values found in the high-productivity population matched only for the micronutrients B and Zn. The nutritional balance among the populations studied was coherent and was lower in the high-productivity population. The DRIS standards proposed for irrigated bean farming were efficient in evaluating the nutritional status of the crop areas studied. Calcium, Cu, and S were found to be the least available nutrients, indicating high response potential for the fertilizing using these nutrients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intercropping corn (Zea mays L.) with forages, such as palisadegrass {Urochloa brizantha (Hochst. ex A. rich.) r. D. Webster [syn. Brachiaria brizantha (Hochst. ex A. rich.) Stapf]} or guineagrass [Megathyrsus maximus (Jacq.) B. K. Simon & S. W. L. Jacobs (syn. Panicum maximum Jacq.)], provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to evaluate what time these forages have to be sown into corn systems to avoid reductions in both corn and forage production. This study, conducted for three growing seasons at Botucatu, Brazil, evaluated nutrient concentration and yield of corn as affected by time of forage intercropped as well as forage's dry matter production. our data showed that intercropping systems did not reduce leaf nutrient concentrations and grain yield of corn in relation to sole corn. The simultaneous intercropping of corn and guineagrass resulted in the lowest plant population (51, 200 plant ha-1), number of ears per plant (1.0), and, consequently, the lowest corn grain yield (9801 kg ha-1). Guineagrass seeded at the time of corn fertilizer topdressing resulted in the highest plant population (59, 400 plants ha-1), number of ears per plant (1.2), and corn grain yield (12, 077 kg ha-1). Forage production was highest when intercrop was done simultaneously. palisadegrass could be intercropped with corn both simultaneously or at topdressing fertilization stage. In contrast, it is recommended that guineagrass should only be intercropped with corn at topdressingfertilization. © Crop Science Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cowpea [Vigna unguiculata (L) Walp] have great social and economic importance for the Para State. It grows well in areas with low precipitation and two crop cycles can be obtained annually. This study aimed to assess the effect of the residual fertilization from a previous culture (Sorghum bicolor L. Moench) and crop systems on cowpea yield and macronutrient concentration on leaves of three cowpea cultivars (BRSMilênio, BRS-Urubuquara e BRS-Guariba). The study was conducted at the UFRA. The treatments were two crop systems (minimum tillage and conventional), four levels of potassium (50, 100, 200 e 300 kg de KCl ha-1 applied to a previous sorghum culture) and the three cowpea cultivars. Treatments were organized as a three (4 x 2 x 3) factor experiment on a randomized complete block design. The soil was a yellow latosol. In each experiment plot five plants were selected to determine shoot dry matter and foliar nutrient concentration. Grain yield was determined after harvesting all plants on the experiment plot. The residual KCl fertilization affected foliar nutrient content, but did not affect shoot dry mass or yield of grain. Yield was higher in the minimum tillage system. Highest yield (1590 kg ha-1) was recorded int the cv. 'Guariba' when 100 kg of KCl ha-1 had been used in the previous crop. The highest content of leaf N and K was found in cowpea under minimum tillage system. The amount of P and Mg were higher in the conventional system whereas the amount of Ca did not change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfei çoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentrations associated with climate change will likely influence a wide variety of ecosystems. Terrestrial research has examined the effects of increasing CO2 concentrations on the functionality of plant systems; with studies ranging in scale from the short-term responses of individual leaves, to long-term ecological responses of complete forests. While terrestrial plants have received much attention, studies on the responses of marine plants (seagrasses) to increased CO 2(aq) concentrations remain relatively sparse, with most research limited to small-scale, ex situ experimentation. Furthermore, few studies have attempted to address similarities between terrestrial and seagrass responses to increases in CO2(aq). The goals of this dissertation are to expand the scope of marine climate change research, and examine how the tropical seagrass, Thalassia testudinum responds to increasing CO 2(aq)concentrations over multiple spatial and temporal scales. ^ Manipulative laboratory and field experimentation reveal that, similar to terrestrial plants, seagrasses strongly respond to increases in CO 2(aq) concentrations. Using a novel field technique, in situ field manipulations show that over short time scales, seagrasses respond to elevated CO2(aq) by increasing leaf photosynthetic rates and the production of soluble carbohydrates. Declines in leaf nutrient (nitrogen and phosphorus) content were additionally detected, paralleling responses from terrestrial systems. Over long time scales, seagrasses increase total above- and belowground biomass with elevated CO2(aq), suggesting that, similar to terrestrial research, pervasive increases in atmospheric and oceanic CO2(aq) concentrations stand to influence the productivity and functionality of these systems. Furthermore, field experiments reveal that seagrass epiphytes, which comprise an important component of seagrass ecosystems, additionally respond to increased CO2(aq) with strong declines in calcified taxa and increases in fleshy taxa. ^ Together, this work demonstrates that increasing CO2(aq) concentrations will alter the functionality of seagrass ecosystems by increasing plant productivity and shifting the composition of the epiphyte community. These results have implications for future rates of carbon storage and sediment production within these widely distributed systems.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Vale do Ribeira, SP, main agricultural activity is the banana crop, which accounts for most of this fruit production in the State of São Paulo. The nutritional balance of the plant is one of the most important factors for the banana plant can complete the cycle and achieve high productivity. Aiming to evaluate the seasonal variation of leaf nutrient concentration in banana plants in Vale do Ribeira-SP, we used the results of 252 chemical analyses of plant tissue, collected from August 2009 to September 2010, in the 18 representative properties for the region, ten cultivated with subgroup Cavendish banana plant and eight of subgroup Prata banana plant. The largest variation between the macronutrient occurred for K and S, and among the micronutrients, especially for Fe and B. In some dates of evaluation, there was a higher leaf concentration of P, K, Ca and Zn, in subgroup Cavendish banana plants, while the subgroup Prata banana plants showed higher leaf concentration, especially of Mn, B and N. Climatic conditions, especially rain, influenced the leaf nutrient content, especially for K, N, S, B and Fe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nursery grown seedlings are an essential part of the forestry industry. These seedlings are grown under high nutrient conditions caused by fertilization. Though grown in a controlled environment, symbionts such as ectomycorrhizal fungi (EcMF) are often found in these conditions. To examine the effects of EcMF in these conditions, colonized Picea glauca seedlings were collected from Toumey Nursery in Watersmeet, MI. After collection, the EcMF present were morphotyped, and seedlings with different morphotypes were divided equally into two treatment types- fertilized and unfertilized. Seedlings received treatment for one growing season. After that time, seedlings were collected, ectomycorrhizas identified using morphotyping and DNA sequencing, and seedlings were analyzed for differences in leaf nutrient concentration, content, root to shoot ratio, total biomass, and EcMF community structure. DNA sequencing identified 5 unique species groups- Amphinema sp. 1, Amphinema sp. 5, Thelephora terrestris, Sphaerosporella brunnea, and Boletus variipes. In the unfertilized treatment it was found that Amphinema sp. 1 strongly negatively impacted foliar N concentration. In fertilized seedlings, Thelephora terrestris had a strong negative impact on foliar phosphorus concentration, while Amphinema sp. 1 positively impacted foliar boron, magnesium, manganese, and phosphorus concentration. In terms of content, Amphinema sp. 1 led to significantly higher content of manganese and boron in fertilized treatments, as well as elevated phosphorus in unfertilized seedlings. Amphinema sp. 5 had a significant negative effect on phosphorus content. When examining root to shoot ratio and biomass, those seedlings with more non-mycorrhizal tips had a higher root to shoot ratio. Findings from the study shed light on the interactions of the species. Amphinema sp. 5 shows very different functionality than Amphinema sp. 1. Amphinema sp. 1 appears to have the highest positive effect on seedling nutrition when in both fertilized and unfertilized environments. Amphinema sp. 5 and T. terrestris appear to behave parasitically in both fertilized and unfertilized conditions.