784 resultados para kin recognition
Resumo:
Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies.
Resumo:
Members of the order Mysidacea are important component in marine and estuarine plankton inhabiting all regions of the oceans. There are many brackish water species and few species occur in fresh water, some have become adapted to the specialized environments of caves and wells. They are omnivores, responsible for remineralisation of a substantial portion of the detritus in the water column. They form an important link in the food chain (between microbial producers and secondary consumers) and therefore play a major role in the cycling of energy within the aquatic ecosystem. In tropical and subtropical waters, swarms of mysids are exploited commercially and marketed as preserved cooked food. Mysids have been used in fish farming as live feed resource. They are also excellent experimental organism, extremely useful in the studies of potential impact of various pollutants in the aquatic environment. Mysids are also used in wood pulp effluent plants.Considering the significant role of mysids in the productivity of tropical and coastal ecosystems,the present study has been undertaken to extend our knowledge on the systematics, species composition, distribution,abundance and ecology of mysid fauna of the Indian EEZ and adjoining areas. The present study therefore will undoubtedly fumish valuable information on Mysidacea of the Indian waters.
Resumo:
The objectives of this study were: (1) to test the existence of an aggregation pheromone in the gregarious psocid Cerastipsocus sivorii; (2) to compare the attractiveness of odors from different aggregations; (3) to test whether nymphs are able to chemically recognize damage-released alarm signals. In a choice experiment conducted in the laboratory, we showed that psocids are able to detect chemical cues from groups of conspecifics. Laboratory experiments also showed that nymphs are capable of chemically recognizing the aggregations where they came from. Finally, in a field experiment, most aggregations dispersed when exposed to the body fluids of a crushed conspecific, but no aggregations dispersed upon exposure to a crushed termite. The implications of these results for the evolution of sociality in psocopterans are discussed.
Resumo:
Anexas ao aparelho do ferrão dos himenópteros aculeados encontram-se as glândulas de veneno e as de Dufour. A glândula de veneno é originada das glândulas associadas ao ovopositor dos himenópteros ancestrais não aculeados, já a glândula de Dufour é menos derivada, homóloga das glândulas colateriais dos outros insetos, sendo encontrada em todas as fêmeas dos himenópteros. Nestes insetos sua função é, em grande parte, desconhecida, mas, em formigas, parece estar envolvida com a comunicação e a defesa e, nas abelhas não sociais, com a construção e a proteção do ninho. Nas vespas pode estar relacionada ao reconhecimento parental. Foram observadas diferenças morfológicas e na composição química da secreção da glândula de Dufour entre as espécies, bem como na mesma espécie, entre as castas dos himenópteros sociais e entre indivíduos da mesma casta desempenhando diferentes funções ou pertencentes a ninhos diferentes. Portanto, nos himenópteros, sua função original de produzir substâncias para proteger os ovos ou favorecer a ovoposição parece ter sido substituída ou complementada com a função de produzir semioquímicos com função na comunicação.
Resumo:
In social insects, cuticular hydrocarbons are involved in species, kin, caste and nestmate recognition. Gas chromatography and mass spectrometry were used to compare the cuticular hydrocarbon composition of workers, males and queens of Melipona bicolor. The cuticular hydrocarbon composition of this species was found to consist mainly of C23, C25:1, C25, C27:1, C27, C29:1 and C29, which are already present in imagoes that have not yet abandoned the brood cell. This composition varied quantitatively and qualitatively between and within the castes and sexes. The newly emerged workers and young queens (virgins) had similar cuticular hydrocarbon profiles, which were different from those of the males. When the females start executing their tasks in the colony, the cuticular hydrocarbon profile differences appear. The workers have less variety, while the queens conserve or increase the number of cuticular hydrocarbon compounds. The queens have more abdominal tegumentary glands than the workers, which apparently are the source of the new cuticular compounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recognition systems play a key role in a range of biological processes, including mate choice, immune defence and altruistic behaviour. Social insects provide an excellent model for studying recognition systems because workers need to discriminate between nestmates and non-nestmates, enabling them to direct altruistic behaviour towards closer kin and to repel potential invaders. However, the level of aggression directed towards conspecific intruders can vary enormously, even among workers within the same colony. This is usually attributed to differences in the aggression thresholds of individuals or to workers having different roles within the colony. Recent evidence from the weaver ant Oecophylla smaragdina suggests that this does not tell the whole story. Here I propose a new model for nestmate recognition based on a vector template derived from both the individual's innate odour and the shared colony odour. This model accounts for the recent findings concerning weaver ants, and also provides an alternative explanation for why the level of aggression expressed by a colony decreases as the diversity within the colony increases, even when odour is well-mixed. The model makes additional predictions that are easily tested, and represents a significant advance in our conceptualisation of recognition systems.
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
Abstract Many species of social insects have the ability to recognize their nestmates. In bees, sociality is maintained by bees that recognize which individuals should be helped and which should be hanned in order to maximize fitness (either inclusive or individual) (Hamilton 1964; Lin and Michener 1972). Since female bees generally lay eggs in a single nest, it is highly likely that bees found cohabitating in the same nest are siblings. According to the kin selection hypothesis, individuals should cooperate and avoid aggression with same sex nestmates (Hamilton 1964). However, in opposite sex pairs that are likely kin, aggression should increase among nestmates as an expression of inbreeding avoidance (Lihoreau et al. 2007). Female bees often guard nest entrances, recognizing and excluding foreign conspecific females that threaten to steal nest resources (Breed and Page 1991). Conversely, males that aggressively guard territories should avoid aggression towards other males that are likely kin (Shellman-Reeve and Gamboa 1984). In order to test whether Xy/ocopa virginica can distinguish nestmates from non-nestmates, circle tube testing arenas were used. Measures of aggression, cooperation and tolerance were evaluated to detennine the presence of nestmate recognition in this species. The results of this study indicate that male and female X virginica have the ability to distinguish nestmates from non-nestmates. Individuals in same sex pairs demonstrated increased pushing, biting, and C-posturing when faced with non-nestmates. Males in same sex pairs also attempted to pass (unsuccessfully) nOIl-nestmates more often than ncstmates, suggesting that this behaviour may be an cxpression of dominancc in males. Increased cooperation exemplified by successful passes was not observed among nestmates. However, incrcased tolerance in the [onn of head-to-head touching was observed for nestmates in female same sex and opposite sex pairs. These results supported the kin selection hypothesis. Moreover, increased tolerance among opposite sex non-nestmates suggested that X virginica do not demonstrate inbreeding avoidance among nestmates. 3 The second part of this study was conducted to establish the presence and extent of drifting, or travelling to different nests, in a Xylocopa virgillica population. Drifting in flying Hymenoptera is reported to be the result of navigation error and guard bees erroneously admitting novel individuals into the nest (Michener 1966). Since bees in this study were individually marked and captured at nest entrances, the locations where individuals were caught allowed me to determine where and how often bees travelled from nest to nest. Ifbees were captured near their home nests, changing nests may have been deliberate or explained by navigational error. However, ifbees were found in nests further away from their homes, this provides stronger evidence that flying towards a novel nest may have been deliberate. Female bees are often faithful to their own nests (Kasuya 1981) and no drifting was expected in female X virginica because they raise brood and contribute to nest maintenance activities. Contrary to females, males were not expected to remain faithful to a single nest. Results showed that many more females drifted than expected and that they were most often recaptured in a single nest, either their home nest or a novel nest. There were some females that were never caught in the same nest twice. In addition, females drifted to further nests when population density was low (in 2007), suggesting they seek out and claim nesting spaces when they are available. Males, as expected, showed the opposite pattern and most males drifted from nest to nest, never recaptured in the same location. This pattern indicates that males may be nesting wherever space is available, or nesting in benches nearest to their territories. This study reveals that both female and male X virginica are capable of nestmate recognition and use this ability in a dynamic environment, where nest membership is not as stable as once thought.
Resumo:
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Resumo:
A modified version of the intruder-resident paradigm was used to investigate if social recognition memory lasts at least 24 h. One hundred and forty-six adult male Wistar rats were used. Independent groups of rats were exposed to an intruder for 0.083, 0.5, 2, 24, or 168 h and tested 24 h after the first encounter with the familiar or a different conspecific. Factor analysis was employed to identify associations between behaviors and treatments. Resident rats exhibited a 24-h social recognition memory, as indicated by a 3- to 5-fold decrease in social behaviors in the second encounter with the same conspecific compared to those observed for a different conspecific, when the duration of the first encounter was 2 h or longer. It was possible to distinguish between two different categories of social behaviors and their expression depended on the duration of the first encounter. Sniffing the anogenital area (49.9% of the social behaviors), sniffing the body (17.9%), sniffing the head (3%), and following the conspecific (3.1%), exhibited mostly by resident rats, characterized social investigation and revealed long-term social recognition memory. However, dominance (23.8%) and mild aggression (2.3%), exhibited by both resident and intruders, characterized social agonistic behaviors and were not affected by memory. Differently, sniffing the environment (76.8% of the non-social behaviors) and rearing (14.3%), both exhibited mostly by adult intruder rats, characterized non-social behaviors. Together, these results show that social recognition memory in rats may last at least 24 h after a 2-h or longer exposure to the conspecific.
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.
Resumo:
The Anopheles (Nyssorhynchus) albitarsis complex includes six species: An. albitarsis, Anopheles oryzalymnetes Wilkerson and Motoki, n. sp., Anopheles marajoara, Anopheles dencorum, Anopheles janconnae Wilkerson and Sallum, n. sp., and An. albitarsis F. Except for An. deancorum, species of the complex are indistinguishable when only using morphology. The problematic distinction among species of the complex has made study of malaria transmission and ecology of An. albitarsis s.l. difficult. Consequently, involvement of species of the An. albitarsis complex in human Plasmodium transmission is not clear throughout its distribution range. With the aim of clarifying the taxonomy of the above species, with the exception of An. albitarsis F, we present comparative morphological and morphometric analyses, morphological redescriptions of three species and descriptions of two new species using individuals from populations in Brazil, Paraguay, Argentina and Venezuela. The study included characters from adult females, males, fourth-instar larvae, pupae and male genitalia of An. albitarsis, An. deaneorum and An. oryzalimnetes n. sp. For An. janconnae n. sp. only characters of the female, male and male genitalia were analysed. Fourth-instar larvae and pupae and male genitalia characteristics of all five species are illustrated. Bionomics and distribution data are given based on published literature records
Resumo:
Background: A family of hydrophilic acylated surface (HASP) proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic) and intracellular (amastigote) stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia) have lost HASP genes from their genomes. Methods/Principal Findings: We have used molecular and cellular methods to analyse HASP expression in New World Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia) species, L. (V.) braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World Leishmania species and the L. (L.) mexicana complex. A related gene is also present in Leptomonas seymouri and this may represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the orthologous (o) HASPs) are predominantly expressed on the plasma membrane in amastigotes and are recognised by immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients, suggesting that antigenic change may play a role in immune recognition of this protein family. Conclusions/Significance: These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in the same chromosomal region in species across the genus Leishmania. These proteins are surface-exposed on amastigotes (although L. (L.) major parasites also express HASPB on the metacyclic plasma membrane). The central repetitive domains of the HASPs are highly variant in their amino acid sequences, both within and between species, consistent with a role in immune recognition in the host.
Resumo:
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.