996 resultados para killer activity
Resumo:
Neuroimmunomodulation describes the field focused on understanding the mechanisms by which the central nervous system interacts with the immune system, potentially leading to changes in animal behavior. Nonetheless, not many articles dealing with neuroimmunomodulation employ behavior as an analytical endpoint. Even fewer papers deal with social status as a possible modifier of neuroimmune phenomena. In the described sets of experiments, we tackle both, using a paradigm of social dominance and subordination. We first review data on the effects of different ranks within a stable hierarchical relationship. Submissive mice in this condition display more anxiety-like behaviors, have decreased innate immunity, and show a decreased resistance to implantation and development of melanoma metastases in their lungs. This suggests that even in a stable, social, hierarchical rank, submissive animals may be subjected to higher levels of stress, with putative biological relevance to host susceptibility to disease. Second, we review data on how dominant and submissive mice respond differentially to lipopolysaccharide (LPS), employing a motivational perspective to sickness behavior. Dominant animals display decreased number and frequency in several aspects of behavior, particularly agonistic social interaction, that is, directed toward the submissive cage mate. This was not observed in submissive mice that maintained the required behavior expected by its dominant mate. Expression of sickness behavior relies on motivational reorganization of priorities, which are different along different social ranks, leading to diverse outcomes. We suggest that in vitro assessment of neuroimmune phenomena can only be understood based on the behavioral context in which they occur.
Resumo:
Clinical studies of the immunological effects of methionine enkephalin in normal volunteers, cancer, and AIDS patients are summarized. The major immunology changes seen were increases in T cell subsets, natural killer activity, as well as mitogen blastogenesis. Clinically, the cancer and ARC patients did not develop infections.
Resumo:
The yeasts are microorganisms with great potential for biotechnological applications in diverse areas. The biological control of phytopathogens by yeasts has showed satisfactory results under laboratory conditions, and it has already produced commercial formulations. With this as focus, this work aims to perform in vitro and in vivo evaluations of the action of a Torulaspora globosa yeast strain (1S112), isolated from sugarcane rhizosphere, against the phytopathogenic mold Colletotrichum sublineolum, the causative agent of anthracnose in sorghum. In vitro experiments included the antagonism test in Petri dishes with morphological hyphal evaluation; yeast killer activity; siderophore, volatile compound and hydrolytic enzyme production. In vivo experiments were conducted in greenhouse conditions with a sorghum variety susceptible to C. sublineolum by evaluating the anthracnose disease for 6 weeks. The results indicated that the yeast strain significantly controlled the fungal growth, either in vitro or in vivo. The strain of T. globosa exhibited killer activity against two sensitive strains, which is a novel capacity for this species. The yeast did not produce siderophores, volatile compounds or hydrolytic enzymes, although it has reduced the mycelial growth, resulting in hyphal deformities but not cell death. The yeast controlled the anthracnose disease in sorghum, either inoculated before or after the fungal spores, suggesting that the competition for space and nutrients to dominate the mold and killer toxin production, altering the hyphal morphology, are mechanisms utilized by the yeast in the biocontrol.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study we investigated the effect of beta-glucan derived from Saccharomyces cerevisiae on fungicidal activity, cytokine production and natural killer activity. Spleen and peritoneal cells from female C57BL/6 mice, previously injected (24 or 48 h) with 20 or 100 mu g of glucan by i.p. route, were assayed. In vivo mu-glucan administration primed spleen cells for a higher production of IL-12 and TNF-alpha when S. aureus was used as a stimulus. In addition, beta-glucan increased NK spleen cells activity against YAC target cells. Some immunomodulatory activities not yet described for beta-glucan were observed in this work.
Resumo:
In this study we investigated the effect of β-glucan derived from Saccharomyces cerevisiae on fungicidal activity, cytokine production and natural killer activity. Spleen and peritoneal cells from female C57BL/6 mice, previously injected (24 or 48 h) with 20 or 100 μg of glucan by i.p. route, were assayed. In vivo β-glucan administration primed spleen cells for a higher production of IL-12 and TNF-α when S. aureus was used as a stimulus. In addition, β-glucan increased NK spleen cells activity against YAC target cells. Some immunomodulatory activities not yet described for β-glucan were observed in this work. © 2005 Institute of Physiology, Academy of Sciences of the Czech Republic.
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
In this study, we evaluated the efficiency of six isolates of Saccharomyces cerevisiae in controlling Colletotrichum acutatum, the causal agent of postbloom fruit drop that occur in pre-harvest citrus. We analyzed the mechanisms of action involved in biological control such as: production of antifungal compounds, nutrient competition, detection of killer activity, and production of hydrolytic enzymes of the isolates of S. cerevisiae on C. acutatum and their efficiency in controlling postbloom fruit drop on detached citrus flowers. Our results showed that all six S. cerevisiae isolates produced antifungal compounds, competed for nutrients, inhibited pathogen germination, and produced killer activity and hydrolytic enzymes when in contact with the fungus wall. The isolates were able to control the disease when detached flowers were artificially inoculated, both preventively and curatively. In this work we identified a novel potential biological control agent for C acutatum during pre-harvest. This is the first report of yeast efficiency for the biocontrol of postbloom fruit drop, which represents an important contribution to the field of biocontrol of diseases affecting citrus populations worldwide. (C) 2015 Elsevier GmbH. All rights reserved.
Resumo:
Opiates are potent analgesic and addictive compounds. They also act on immune responses, and morphine, the prototypic opiate, has been repeatedly described as an immunosuppressive drug. Pharmacological studies have suggested that the inhibitory action of opiates on immunity is mediated by multiple opioid receptor sites but molecular evidence has remained elusive. Recently, three genes encoding μ- (MOR), δ-, and κ-opioid receptors have been cloned. To investigate whether the μ-opioid receptor is functionally implicated in morphine immunosuppression in vivo, we have examined immune responses of mice with a genetic disruption of the MOR gene. In the absence of drug, there was no difference between wild-type and mutant mice with regard to a large number of immunological endpoints, suggesting that the lack of MOR-encoded protein has little consequence on immune status. Chronic morphine administration induced lymphoid organ atrophy, diminished the ratio of CD4+CD8+ cells in the thymus and strongly reduced natural killer activity in wild-type mice. None of these effects was observed in MOR-deficient mice after morphine treatment. This demonstrates that the MOR gene product represents a major molecular target for morphine action on the immune system. Because our previous studies of MOR-deficient mice have shown that this receptor protein is also responsible for morphine analgesia, reward, and physical dependence, the present results imply that MOR-targeted therapeutic drugs that are developed for the treatment of pain or opiate addiction may concomitantly influence immune responses.
Resumo:
Background Obesity is related to a higher rate of infections and some types of cancer. Here we analyzed the impact of obesity and weight loss induced by Roux-en-Y gastric bypass (RYGB) on immunological parameters, i.e., cytokine productions and natural killer cell function. Methods We analyzed 28 morbidly obese patients before and 6 months after RYGB. Biochemical parameters were analyzed in plasma. The percent of natural killer (NK) cells, their cytotoxicity, and the production of cytokines by peripheral blood mononuclear cells were analyzed. The percent of NK cells was determined by flow cytometry and cytokine production determined by enzyme-linked immunosorbent assay. NK cytotoxicity was determined by the lactate dehydrogenase release assay. Results The weight loss 6 months following surgery was 35.3 +/- 4.5 kg. RYGB also improves biochemical parameters. No significant difference was found in the percent of NK cells after surgery. We found an increase in the production of interferon-gamma, interleukin (IL)-12 and IL-18, but not in IL-2, 6 months after RYGB. Cytotoxic activity of NK cells was significantly enhanced 6 months after RYGB [17.1 +/- 14.7% before RYGB vs 51.8 +/- 11.3% at 6 months after, at 40: 1 effector to target cell ratio; p<0.001]. We observed significant post-surgical improvement in the cytotoxic activity curve in 22 out of 28 patients (78.6%), irrespective of the target to effector cell ratio. Conclusions The weight loss induced by RYGB modifies the production of cytokines related with NK cell function and improves its activity.
Resumo:
The aim of this study was to further investigate the mechanism of suppression of natural killer (NK) cell cytotoxic activity In peripheral blood following strenuous exercise. Blood was collected for analysis of NK cell concentration, cytotoxic activity, CD2 surface expression and perforin gene expression from runners (RUN, n = 6) and resting controls (CONTROL, n = 4) pre-exercise, 0, 1.5, 5, and 24 h following a 60-min treadmill run at 80% of VO2 peak. Natural killer cytotoxic activity, measured using a whole blood chromium release assay, fluctuated minimally in the CONTROL group and increased by 63% and decreased by 43% 0 and 1.5 h post-exercise, respectively, in the RUN group (group x time, P < 0.001). Lytic index (cytotoxic activity per cell) did not change. Perforin mRNA, measured using quantitative real-time polymerase chain reaction (ORT-PCR) decreased from pre- to post-exercise and remained decreased through 24 h, The decrease from pre- to 0 In post-exercise was seen predominately in the RUN group and was inversely correlated r = - 0.95) to pre-exercise perform mRNA. The NK cell surface expression of CD2 (lymphocyte function-associated antigen-2) was determined using fluorescent antibodies and flow cytometry, There was no change in the proportion of NK cells expressing CD2 or CD2 density, We conclude that (1) numerical redistribution accounted for most of the change in NK cytotoxic activity following a strenuous run, (2) decrease in perforin gene expression during the run was inversely related to pre-exercise levels but did not parallel changes in cytotoxic activity, and (3) CD2 surface expression was not affected by exercise.
Resumo:
The study evaluated the activity of NK cells during the course of experimental infection of hamsters with Paracoccidioides brasiliensis. Eigthy hamsters were infected with P. brasiliensis by intratesticular route and sacrificed at 24h, 48h, 96h, 1, 2, 4, 8 and 11 weeks of infection and compared to 40 noninfected hamsters employed as controls. These animals were submitted to the study of NK cytotoxic activity by a single-cell assay and humoral immune response by immunodiffusion and ELISA tests. The production of macrophage migration inhibitory factor in the presence of Phyto-hemagglutinin and P. brasiliensis antigen and histopathology of the lesions were evaluated at 1, 4, 8 and 11 weeks of infection. The infected animals displayed significantly high levels of NK activity during the four weeks of infection that decreased from the 8th week on when compared to controls. This impairment of NK activity was associated with depression of cell-mediated immune response and with increase in the extension of the histopathologic lesions. There was an inverse correlation between NK cell activity and specific antibody levels. The results suggest that after initial activation, NK cells were unable to control the fungus dissemination. The impairment of NK activity in the late stages of the infection might be related to immunoregulatory disturbances associated with paracoccidioidomycosis.
Resumo:
Natural killer cells are increasingly being considered an important component of innate resistance to viruses, but their role in HIV infection is controversial. Some investigators have found that natural killer cells do not confer a protective effect during the progression of HIV disease, whereas others have shown that natural killer cells may be protective and retard the progression of the disease, either through their lytic activity or by a chemokine-related suppression of HIV replication. In this study, we analyzed functional alterations in the activity of natural killer cells during HIV-1 infection using a natural killer cells activity assay with K562 cells as targets. RESULTS: Our results show that the activity of natural killer cells decreases only in the advanced phase of HIV infection and when high (40:1) effector cell-target cell ratios were used. The depression at this stage of the disease may be related to increased levels of some viral factors, such as gp120 or gag, that interfere with the binding capacity of natural killer cells, or to the decreased production of natural killer cells -activity-stimulating cytokines, such as IFN-a and IL-12, by monocytes, a subset of cells that are also affected in the late stage of HIV infection. The data suggest that decreased natural killer cells cell activity may contribute to the severe impairment of the immune system of patients in the late stages of HIV infection.
Resumo:
Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function, using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of IL-1β, IL-6, TNF-α, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1β production, but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-α and IL-12 production. Monocyte-depletion significantly reduced the impact of LcS on lymphocyte activation, cytokine production and NK cell activity. In conclusion, LcS preferentially activated cytotoxic lymphocytes in both the innate and specific immune system, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both pro-inflammatory and anti-inflammatory cytokine production in the absence of LPS, but inhibited LPS-induced cytokine production in some cases. Monocytes play an important role in LcS-induced immunological responses.
Resumo:
Pteridium aquilinum (bracken fern) is one of the most common plants. Epidemiological studies have revealed a higher risk of certain types of cancers (i.e., esophageal, gastric) in people who consume bracken fern directly ( as crosiers or rhizomes) or indirectly through the consumption of milk from livestock that fed on the plant. In animals, evidence exists regarding the associations between chronic bracken fern intoxication, papilloma virus infection, and the development of carcinomas. While it is possible that some carcinogens in bracken fern could be responsible for these cancers in both humans and animals, it is equally plausible that the observed increases in cancers could be related to induction of an overall immunosuppression by the plant/its various constituents. Under the latter scenario, normal tumor surveillance responses against nascent (non-bracken-induced) cancers or responses against viral infections ( specifically those linked to induction of cancers) might be adversely impacted by continuous dietary exposure to this plant. Therefore, the overall objective of this study was to evaluate the immunomodulatory effects of bracken fern following daily ingestion of its extract by a murine host over a period of 14 ( or up to 30) days. In C57BL/6 mice administered ( by gavage) the extract, histological analyses revealed a significant reduction in splenic white pulp area. Among a variety of immune response parameters/functions assessed in these hosts and isolated cells, both delayed-type hypersensitivity (DTH) analysis and evaluation of IFN gamma. production by NK cells during T(H)1 priming were also reduced. Lastly, the innate response in these hosts-assessed by analysis of NK cell cytotoxic functionality-was also diminished. The results here clearly showed the immunosuppressive effects of P. aquilinum and that many of the functions that were modulated could contribute to the increased risk of cancer formation in exposed hosts.