868 resultados para kernel estimators
Resumo:
In environmental epidemiology, exposure X and health outcome Y vary in space and time. We present a method to diagnose the possible influence of unmeasured confounders U on the estimated effect of X on Y and to propose several approaches to robust estimation. The idea is to use space and time as proxy measures for the unmeasured factors U. We start with the time series case where X and Y are continuous variables at equally-spaced times and assume a linear model. We define matching estimator b(u)s that correspond to pairs of observations with specific lag u. Controlling for a smooth function of time, St, using a kernel estimator is roughly equivalent to estimating the association with a linear combination of the b(u)s with weights that involve two components: the assumptions about the smoothness of St and the normalized variogram of the X process. When an unmeasured confounder U exists, but the model otherwise correctly controls for measured confounders, the excess variation in b(u)s is evidence of confounding by U. We use the plot of b(u)s versus lag u, lagged-estimator-plot (LEP), to diagnose the influence of U on the effect of X on Y. We use appropriate linear combination of b(u)s or extrapolate to b(0) to obtain novel estimators that are more robust to the influence of smooth U. The methods are extended to time series log-linear models and to spatial analyses. The LEP plot gives us a direct view of the magnitude of the estimators for each lag u and provides evidence when models did not adequately describe the data.
Resumo:
Recurrent event data are largely characterized by the rate function but smoothing techniques for estimating the rate function have never been rigorously developed or studied in statistical literature. This paper considers the moment and least squares methods for estimating the rate function from recurrent event data. With an independent censoring assumption on the recurrent event process, we study statistical properties of the proposed estimators and propose bootstrap procedures for the bandwidth selection and for the approximation of confidence intervals in the estimation of the occurrence rate function. It is identified that the moment method without resmoothing via a smaller bandwidth will produce curve with nicks occurring at the censoring times, whereas there is no such problem with the least squares method. Furthermore, the asymptotic variance of the least squares estimator is shown to be smaller under regularity conditions. However, in the implementation of the bootstrap procedures, the moment method is computationally more efficient than the least squares method because the former approach uses condensed bootstrap data. The performance of the proposed procedures is studied through Monte Carlo simulations and an epidemiological example on intravenous drug users.
Resumo:
2000 Mathematics Subject Classification: 62G07, 60F10.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to establish the optimum level of palm kernel meal in the diet of Santa Ines lambs based on the sensorial characteristics and fatty acid profile of the meat. We used 32 lambs with a starting age of 4 to 6 months and mean weight of 22 2.75 kg, kept in individual stalls. The animals were fed with Tifton-85 hay and a concentrate mixed with 0.0, 6.5, 13.0 or 19.5% of palm kernel meal based on the dry mass of the complete diet. These levels formed the treatments. Confinement lasted 80 days and on the last day the animals were fasted and slaughtered. After slaughter, carcasses were weighed and sectioned longitudinally, along the median line, into two antimeres. Half-carcasses were then sliced between the 12th and 13th ribs to collect the loin (longissimus dorsi), which was used to determine the sensorial characteristics and fatty acid profile of the meat. For sensorial evaluation, samples of meat were given to 54 judges who evaluated the tenderness, juiciness, appearance, aroma and flavor of the meat using a hedonic scale. Fatty acids were determined by gas chromatography. The addition of palm kernel meal to the diet had no effect on the sensorial characteristics of meat juiciness, appearance, aroma or flavor. However, tenderness showed a quadratic relationship with the addition of the meal to the diet. The concentration of fatty acids C12:0, C14:0 and C16:0 increased with the addition of palm kernel meal, as did the sum of medium-chain fatty acids and the atherogenicity index. Up to of 19.5% of the diet of Santa Ines lambs can be made up of palm kernel meal without causing significant changes in sensorial characteristics. However, the fatty acid profile of the meat was altered.
Resumo:
This article deals with the efficiency of fractional integration parameter estimators. This study was based on Monte Carlo experiments involving simulated stochastic processes with integration orders in the range]-1,1[. The evaluated estimation methods were classified into two groups: heuristics and semiparametric/maximum likelihood (ML). The study revealed that the comparative efficiency of the estimators, measured by the lesser mean squared error, depends on the stationary/non-stationary and persistency/anti-persistency conditions of the series. The ML estimator was shown to be superior for stationary persistent processes; the wavelet spectrum-based estimators were better for non-stationary mean reversible and invertible anti-persistent processes; the weighted periodogram-based estimator was shown to be superior for non-invertible anti-persistent processes.
Resumo:
The critically endangered black-faced lion tamarin, Leontopithecus caissara, has a restricted geographical distribution consisting of small mainland and island populations, each with distinct habitats in coastal southeastern Brazil. Necessary conservation management actions require an assessment of whether differences in habitats are reflected in use of space by the species. We studied two tamarin groups on the mainland at Sao Paulo state between August 2005 and March 2007, and compared the results with data from Superagui Island. Three home range estimators were used: minimum convex polygon (MCP), Kernel, and the new technique presented dissolved monthly polygons (DMP). These resulted, respectively, in home ranges of 345, 297, and 282 ha for the 12-month duration of the study. Spatial overlap of mainland groups was extensive, whereas temporal overlap was not, a pattern that indicates resource partitioning is an important strategy to avoid intraspecific competition. L. caissara large home ranges seem to be dynamic, with constant incorporation of new areas and abandonment of others through time. The main difference between mainland and island groups is the amount and variety of sleeping sites. A better understanding of the home range sizes, day range lengths, and territorial behavior of this species will aid in developing better management strategies for its protection. Additionally, the presented DMP protocol is a useful improvement over the MCP method as it results in more realistic home range sizes for wildlife species. Am. J. Primatol. 73: 1114-1126, 2011. (C) 2011 Wiley Periodicals, Inc.
Resumo:
It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Raw macadamia kernel pieces were immersed in water (specific gravity 1.00 g/cm(3)), brine (SG 1.02 g/cm(3)) or ethanol solution (SG 0.97 g/cm(3)) for 30 or 60 s, then re-dried to below 1.5% moisture (wet basis) and stored under vacuum for 0, 4 and 12 months. Flotation in water had no effect on the quality or shelf life of the kernel pieces over 12 months storage, as measured by sensory evaluation of the kernels and chemical analysis of the kernel oil. Immersion in a salt solution caused unacceptable changes in quality during storage, increasing as storage time increased. Flotation in dilute ethanol also caused unacceptable quality changes during storage. Therefore, only flotation of macadamia kernel pieces in water can be recommended for commercial operations. Microbiological concerns with such a process still need to be addressed.
Resumo:
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
Resumo:
A presente dissertação visa retratar a exploração do suporte do protocolo Internet versão seis (IPv6) no kernel do Linux, conjuntamente com a análise detalhada do estado da implementação dos diferentes aspectos em que se baseia o protocolo. O estudo incide na experimentação do funcionamento em geral do stack, a identificação de inconsistências deste em relação aos RFC’s respectivos, bem como a simulação laboratorial de cenários que reproduzam casos de utilização de cada uma das facilidades analisadas. O objectivo desta dissertação não é explicar o funcionamento do novo protocolo IPv6, mas antes, centrar-se essencialmente na exploração do IPv6 no kernel do Linux. Não é um documento para leigos em IPv6, no entanto, optou-se por desenvolver uma parte inicial onde é abordado o essencial do protocolo: a sua evolução até à aprovação e a sua especificação. Com base no estudo realizado, explora-se o suporte do IPv6 no Kernel do Linux, fazendo uma análise detalhada do estado de implementação dos diferentes aspectos em que se baseia o protocolo. Bem como a realização de testes de conformidade IPv6 em relação aos RFC’s.
Resumo:
Copyright © 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society.
Resumo:
This paper proposes a global multiprocessor scheduling algorithm for the Linux kernel that combines the global EDF scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel real-time tasks to be executed on more than one processor at a given time instant. We state that some priority inversion may actually be acceptable, provided it helps reduce contention, communication, synchronisation and coordination between parallel threads, while still guaranteeing the expected system’s predictability. Experimental results demonstrate the low scheduling overhead of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.