987 resultados para kernel density estimator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a new sparse kernel density estimator using a forward constrained regression framework, within which the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Our main contribution is to derive a recursive algorithm to select significant kernels one at time based on the minimum integrated square error (MISE) criterion for both the selection of kernels and the estimation of mixing weights. The proposed approach is simple to implement and the associated computational cost is very low. Specifically, the complexity of our algorithm is in the order of the number of training data N, which is much lower than the order of N2 offered by the best existing sparse kernel density estimators. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to those of the classical Parzen window estimate and other existing sparse kernel density estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new sparse kernel density estimator is introduced. Our main contribution is to develop a recursive algorithm for the selection of significant kernels one at time using the minimum integrated square error (MISE) criterion for both kernel selection. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion for the finite mixture model. Since the constraint on the mixing coefficients of the finite mixture model is on the multinomial manifold, we use the well-known Riemannian trust-region (RTR) algorithm for solving this problem. The first- and second-order Riemannian geometry of the multinomial manifold are derived and utilized in the RTR algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with an accuracy competitive with those of existing kernel density estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an on-line Gaussian mixture density estimator (OGMDE) in the complex-valued domain to facilitate adaptive minimum bit-error-rate (MBER) beamforming receiver for multiple antenna based space-division multiple access systems. Specifically, the novel OGMDE is proposed to adaptively model the probability density function of the beamformer’s output by tracking the incoming data sample by sample. With the aid of the proposed OGMDE, our adaptive beamformer is capable of updating the beamformer’s weights sample by sample to directly minimize the achievable bit error rate (BER). We show that this OGMDE based MBER beamformer outperforms the existing on-line MBER beamformer, known as the least BER beamformer, in terms of both the convergence speed and the achievable BER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Local destinations have previously been shown to be associated with higher levels of both physical activity and walking, but little is known about how the distribution of destinations is related to activity. Kernel density estimation is a spatial analysis technique that accounts for the location of features relative to each other. Using kernel density estimation, this study sought to investigate whether individuals who live near destinations (shops and service facilities) that are more intensely distributed rather than dispersed: 1) have higher odds of being sufficiently active; 2) engage in more frequent walking for transport and recreation. METHODS: The sample consisted of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia. Destinations within these areas were geocoded and kernel density estimates of destination intensity were created using kernels of 400m (meters), 800m and 1200m. Using multilevel logistic regression, the association between destination intensity (classified in quintiles Q1(least)-Q5(most)) and likelihood of: 1) being sufficiently active (compared to insufficiently active); 2) walking≥4/week (at least 4 times per week, compared to walking less), was estimated in models that were adjusted for potential confounders. RESULTS: For all kernel distances, there was a significantly greater likelihood of walking≥4/week, among respondents living in areas of greatest destinations intensity compared to areas with least destination intensity: 400m (Q4 OR 1.41 95%CI 1.02-1.96; Q5 OR 1.49 95%CI 1.06-2.09), 800m (Q4 OR 1.55, 95%CI 1.09-2.21; Q5, OR 1.71, 95%CI 1.18-2.48) and 1200m (Q4, OR 1.7, 95%CI 1.18-2.45; Q5, OR 1.86 95%CI 1.28-2.71). There was also evidence of associations between destination intensity and sufficient physical activity, however these associations were markedly attenuated when walking was included in the models. CONCLUSIONS: This study, conducted within urban Melbourne, found that those who lived in areas of greater destination intensity walked more frequently, and showed higher odds of being sufficiently physically active-an effect that was largely explained by levels of walking. The results suggest that increasing the intensity of destinations in areas where they are more dispersed; and or planning neighborhoods with greater destination intensity, may increase residents' likelihood of being sufficiently active for health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bahadur representation and its applications have attracted a large number of publications and presentations on a wide variety of problems. Mixing dependency is weak enough to describe the dependent structure of random variables, including observations in time series and longitudinal studies. This note proves the Bahadur representation of sample quantiles for strongly mixing random variables (including ½-mixing and Á-mixing) under very weak mixing coe±cients. As application, the asymptotic normality is derived. These results greatly improves those recently reported in literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Little is known about how the distribution of destinations in the local neighbourhood is related to body mass index (BMI). Kernel density estimation (KDE) is a spatial analysis technique that accounts for the location of features relative to each other. Using KDE, this study investigated whether individuals living near destinations (shops and service facilities) that are more intensely distributed rather than dispersed, have lower BMIs.

STUDY DESIGN AND SETTING: A cross-sectional study of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia.

METHODS: Destinations were geocoded, and kernel density estimates of destination intensity were created using kernels of 400, 800 and 1200 m. Using multilevel linear regression, the association between destination intensity (classified in quintiles Q1(least)-Q5(most)) and BMI was estimated in models that adjusted for the following confounders: age, sex, country of birth, education, dominant household occupation, household type, disability/injury and area disadvantage. Separate models included a physical activity variable.

RESULTS: For kernels of 800 and 1200 m, there was an inverse relationship between BMI and more intensely distributed destinations (compared to areas with least destination intensity). Effects were significant at 1200 m: Q4, β -0.86, 95% CI -1.58 to -0.13, p=0.022; Q5, β -1.03 95% CI -1.65 to -0.41, p=0.001. Inclusion of physical activity in the models attenuated effects, although effects remained marginally significant for Q5 at 1200 m: β -0.77 95% CI -1.52, -0.02, p=0.045.

CONCLUSIONS: This study conducted within urban Melbourne, Australia, found that participants living in areas of greater destination intensity within 1200 m of home had lower BMIs. Effects were partly explained by physical activity. The results suggest that increasing the intensity of destination distribution could reduce BMI levels by encouraging higher levels of physical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conflict known as the oTroubleso in Northern Ireland began during the late 1960s and is defined by political and ethno-sectarian violence between state, pro-state, and anti-state forces. Reasons for the conflict are contested and complicated by social, religious, political, and cultural disputes, with much of the debate concerning the victims of violence hardened by competing propaganda-conditioning perspectives. This article introduces a database holding information on the location of individual fatalities connected with the contemporary Irish conflict. For each victim, it includes a demographic profile, home address, manner of death, and the organization responsible. Employing geographic information system (GIS) techniques, the database is used to measure, map, and analyze the spatial distribution of conflict-related deaths between 1966 and 2007 across Belfast, the capital city of Northern Ireland, with respect to levels of segregation, social and economic deprivation, and interfacing. The GIS analysis includes a kernel density estimator designed to generate smooth intensity surfaces of the conflict-related deaths by both incident and home locations. Neighborhoods with high-intensity surfaces of deaths were those with the highest levels of segregation ( 90 percent Catholic or Protestant) and deprivation, and they were located near physical barriers, the so-called peacelines, between predominantly Catholic and predominantly Protestant communities. Finally, despite the onset of peace and the formation of a power-sharing and devolved administration (the Northern Ireland Assembly), disagreements remain over the responsibility and ocommemorationo of victims, sentiments that still uphold division and atavistic attitudes between spatially divided Catholic and Protestant populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.