819 resultados para kernel classifiers
Resumo:
It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Raw macadamia kernel pieces were immersed in water (specific gravity 1.00 g/cm(3)), brine (SG 1.02 g/cm(3)) or ethanol solution (SG 0.97 g/cm(3)) for 30 or 60 s, then re-dried to below 1.5% moisture (wet basis) and stored under vacuum for 0, 4 and 12 months. Flotation in water had no effect on the quality or shelf life of the kernel pieces over 12 months storage, as measured by sensory evaluation of the kernels and chemical analysis of the kernel oil. Immersion in a salt solution caused unacceptable changes in quality during storage, increasing as storage time increased. Flotation in dilute ethanol also caused unacceptable quality changes during storage. Therefore, only flotation of macadamia kernel pieces in water can be recommended for commercial operations. Microbiological concerns with such a process still need to be addressed.
Resumo:
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
Resumo:
A presente dissertação visa retratar a exploração do suporte do protocolo Internet versão seis (IPv6) no kernel do Linux, conjuntamente com a análise detalhada do estado da implementação dos diferentes aspectos em que se baseia o protocolo. O estudo incide na experimentação do funcionamento em geral do stack, a identificação de inconsistências deste em relação aos RFC’s respectivos, bem como a simulação laboratorial de cenários que reproduzam casos de utilização de cada uma das facilidades analisadas. O objectivo desta dissertação não é explicar o funcionamento do novo protocolo IPv6, mas antes, centrar-se essencialmente na exploração do IPv6 no kernel do Linux. Não é um documento para leigos em IPv6, no entanto, optou-se por desenvolver uma parte inicial onde é abordado o essencial do protocolo: a sua evolução até à aprovação e a sua especificação. Com base no estudo realizado, explora-se o suporte do IPv6 no Kernel do Linux, fazendo uma análise detalhada do estado de implementação dos diferentes aspectos em que se baseia o protocolo. Bem como a realização de testes de conformidade IPv6 em relação aos RFC’s.
Resumo:
Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
This paper proposes a global multiprocessor scheduling algorithm for the Linux kernel that combines the global EDF scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel real-time tasks to be executed on more than one processor at a given time instant. We state that some priority inversion may actually be acceptable, provided it helps reduce contention, communication, synchronisation and coordination between parallel threads, while still guaranteeing the expected system’s predictability. Experimental results demonstrate the low scheduling overhead of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.
Resumo:
The mainline Linux Kernel is not designed forhard real-time systems; it only fits the requirements of soft realtimesystems. In recent years, a kernel developer communityhas been working on the PREEMPT-RT patch. This patch(that aims to get a fully preemptible kernel) adds some realtimecapabilities to the Linux kernel. However, in terms ofscheduling policies, the real-time scheduling class of Linux islimited to the First-In-First-Out (SCHED_FIFO) and Round-Robin (SCHED_RR) scheduling policies. These scheduling policiesare however quite limited in terms of realtime performance.Therefore, in this paper, we report one importantcontribution for adding more advanced real-time capabilitiesto the Linux Kernel. Specifically, we describe modificationsto the (PREEMPT-RT patched) Linux kernel to supportreal-time slot-based task-splitting scheduling algorithms. Ourpreliminary evaluation shows that our implementation exhibitsa real-time performance that is superior to the schedulingpolicies provided by the current version of PREMPT-RT. Thisis a significant add-on to a widely adopted operating system.
Resumo:
Typically common embedded systems are designed with high resource constraints. Static designs are often chosen to address very specific use cases. On contrast, a dynamic design must be used if the system must supply a real-time service where the input may contain factors of indeterminism. Thus, adding new functionality on these systems is often accomplished by higher development time, tests and costs, since new functionality push the system complexity and dynamics to a higher level. Usually, these systems have to adapt themselves to evolving requirements and changing service requests. In this perspective, run-time monitoring of the system behaviour becomes an important requirement, allowing to dynamically capturing the actual scheduling progress and resource utilization. For this to succeed, operating systems need to expose their internal behaviour and state, making it available to the external applications, usually using a run-time monitoring mechanism. However, such mechanism can impose a burden in the system itself if not wisely used. In this paper we explore this problem and propose a framework, which is intended to provide this run-time mechanism whilst achieving code separation, run-time efficiency and flexibility for the final developer.
Resumo:
Na atualidade, está a emergir um novo paradigma de interação, designado por Natural User Interface (NUI) para reconhecimento de gestos produzidos com o corpo do utilizador. O dispositivo de interação Microsoft Kinect foi inicialmente concebido para controlo de videojogos, para a consola Xbox360. Este dispositivo demonstra ser uma aposta viável para explorar outras áreas, como a do apoio ao processo de ensino e de aprendizagem para crianças do ensino básico. O protótipo desenvolvido visa definir um modo de interação baseado no desenho de letras no ar, e realizar a interpretação dos símbolos desenhados, usando os reconhecedores de padrões Kernel Discriminant Analysis (KDA), Support Vector Machines (SVM) e $N. O desenvolvimento deste projeto baseou-se no estudo dos diferentes dispositivos NUI disponíveis no mercado, bibliotecas de desenvolvimento NUI para este tipo de dispositivos e algoritmos de reconhecimento de padrões. Com base nos dois elementos iniciais, foi possível obter uma visão mais concreta de qual o hardware e software disponíveis indicados à persecução do objetivo pretendido. O reconhecimento de padrões constitui um tema bastante extenso e complexo, de modo que foi necessária a seleção de um conjunto limitado deste tipo de algoritmos, realizando os respetivos testes por forma a determinar qual o que melhor se adequava ao objetivo pretendido. Aplicando as mesmas condições aos três algoritmos de reconhecimento de padrões permitiu avaliar as suas capacidades e determinar o $N como o que apresentou maior eficácia no reconhecimento. Por último, tentou-se averiguar a viabilidade do protótipo desenvolvido, tendo sido testado num universo de elementos de duas faixas etárias para determinar a capacidade de adaptação e aprendizagem destes dois grupos. Neste estudo, constatou-se um melhor desempenho inicial ao modo de interação do grupo de idade mais avançada. Contudo, o grupo mais jovem foi revelando uma evolutiva capacidade de adaptação a este modo de interação melhorando progressivamente os resultados.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. In order to assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image with those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, in this paper we compare several candidate combiners with respect to their performance in the visual localization task. For this evaluation, we selected the most popular methods in the class of non-trained combiners, namely the sum rule and product rule. A deeper insight into the potential of these combiners is provided through a discriminativity analysis involving the algebraic rules and two extensions of these methods: the threshold, as well as the weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. Furthermore, we address the process of constructing a model of the environment by describing how the model granularity impacts upon performance. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance, confirming the general agreement on the robustness of this rule in other classification problems. The voting method, whilst competitive with the product rule in its standard form, is shown to be outperformed by its modified versions.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010