159 resultados para keratin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dermatophytes are adapted to infect skin, hair and nails by their ability to utilize keratin as a nutrient source. Trichophyton rubrum is an anthropophilic fungus, causing up to 90% of chronic cases of dermatophytosis. The understanding of the complex interactions between the fungus and its host should include the identification of genes expressed during infection. To identify the genes involved in the infection process, representational difference analysis (RDA) was applied to two cDNA populations from T. rubrum, one transcribed from the RNA of fungus cultured in the presence of keratin and the other from RNA generated during fungal growth in minimal medium. The analysis identified differentially expressed transcripts. Genes related to signal transduction, membrane protein, oxidative stress response, and some putative virulence factors were up-regulated during the contact of the fungus with keratin. The expression patterns of these genes were also verified by real-time PCR, in conidia of T. rubrum infecting primarily cultured human keratinocytes in vitro, revealing their potential role in the infective process. A better understanding of this interaction will contribute significantly to our knowledge of the process of dermatophyte infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZusammenfassungKeratin 20 (K20) ist ein Intermediärfilament, das als Strukturelement in den Epithelien des Intestinaltrakts und den Merkelzellen der Haut exprimiert wird. Im Rahmen dieser Arbeit wurden verschiedene K20 Expressionsvektoren generiert, mit denen regulatorische Elemente des humanen Gens für K20 charakterisiert wurden. Analysiert wurde der Bereich von –4,8 kb bzw. –21,5 kb bis 12,9 kb vom Transkriptionsstart. Die Vektoren, welche die Sequenz von –21,5 kb bis 12,9 kb umfassten, konnten die Expression des EGFP Reportergens in HT-29 Zellen signifikant steigern. Zwei Enhancer-Elemente zwischen –21,5 und –18,4 kb bzw. –18,4 und –14,9 kb verstärkten die Expression der Reporterkonstrukte in vitro signifikant. Die Analyse der Vektoren in transgenen Mäusen zeigte, dass diese das Transgen gewebespezifisch exprimieren. Mit dem Bereich von –4,8 kb bis 12,9 kb ließ sich transgenspezifische mRNA Expression in intestinalen Geweben mittels RT-PCR nachweisen. Die Verwendung der Sequenz von –21,5 kb bis 21,8 kb steigerte die Expression in vivo nicht weiter.Für die gewebespezifische Expression des K20 Vektors reicht die 4,8 kb 5´upstream Sequenz aus, der Bereich bis –21,5 kb verstärkt die Expression in vitro, allerdings fehlen für die starke gewebespezifische Expression von Transgenen in vivo noch weitere Kontrollelemente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma), characterized by ichthyotic, rippled hyperkeratosis, erythroderma and skin blistering, is a rare autosomal dominant disease caused by mutations in keratin 1 or keratin 10 (K10) genes. A severe phenotype is caused by a missense mutation in a highly conserved arginine residue at position 156 (R156) in K10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis. Methods The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed. Results We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury. Conclusion In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keratins 8 and 18 (K8/K18) protect the liver from various forms of injury. Studies of liver explants from a large cohort of U.S. patients showed that K8/K18 mutations confer a risk to developing end-stage liver diseases, though which diseases are preferentially involved is unknown. We tested the hypothesis that K8/K18 variants are associated with chronic hepatitis C (CHC) and that their presence correlates with progression of fibrosis. Genomic DNA was isolated from peripheral blood of a well-characterized German cohort of 329 patients with CHC infection. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Our findings showed: (1) amino acid altering keratin heterozygous variants in 24 of 329 CHC patients (7.3%) and non-coding heterozygous variants in 26 patients (7.8%), and (2) 3 new exonic K8 variants (T26R/G55A/A359T); 6 novel non-coding variants and one K18 coding variant (K18 S230T; 2 patients). The most common variants were K8 R341H (10 patients), K8 G62C (6 patients) and K8 I63V (4 patients). A novel and exclusive association of an intronic KRT8 IVS7+10delC deletion in all 10 patients with K8 R341H was observed. Notably, there was a significant association of exonic, but not of intronic K8 variants with increased fibrosis. In conclusion, previously described and novel K8 variants are present in a German population and collectively associate with progression of fibrosis in CHC infection. The unique 100% segregation of the most common K8 variant, R341H, with an intronic deletion suggests that one of these two genetic changes might lead to the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keratin 8 (KRT8) is one of the major intermediate filament proteins expressed in single-layered epithelia of the gastrointestinal tract. Transgenic mice over-expressing human KRT8 display pancreatic mononuclear infiltration, interstitial fibrosis and dysplasia of acinar cells resulting in exocrine pancreatic insufficiency. These experimental data are in accordance with a recent report describing an association between KRT8 variations and chronic pancreatitis. This prompted us to investigate KRT8 polymorphisms in patients with pancreatic disorders. The KRT8 Y54H and G62C polymorphisms were assessed in a cohort of patients with acute and chronic pancreatitis of various aetiologies or pancreatic cancer originating from Austria (n=16), the Czech Republic (n=90), Germany (n=1698), Great Britain (n=36), India (n=60), Italy (n=143), the Netherlands (n=128), Romania (n=3), Spain (n=133), and Switzerland (n=129). We also studied 4,234 control subjects from these countries and 1,492 control subjects originating from Benin, Cameroon, Ethiopia, Ecuador, and Turkey. Polymorphisms were analysed by melting curve analysis with fluorescence resonance energy transfer probes. The frequency of G62C did not differ between patients with acute or chronic pancreatitis, pancreatic adenocarcinoma and control individuals. The frequency of G62C varied in European populations from 0.4 to 3.8%, showing a northwest to southeast decline. The Y54H alteration was not detected in any of the 2,436 patients. Only 3/4,580 (0.07%) European, Turkish and Indian control subjects were heterozygous for Y54H in contrast to 34/951 (3.6%) control subjects of African descent. Our data suggest that the KRT8 alterations, Y54H and G62C, do not predispose patients to the development of pancreatitis or pancreatic cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plectin, a cytolinker of the plakin family, anchors the intermediate filament (IF) network formed by keratins 5 and 14 (K5/K14) to hemidesmosomes, junctional adhesion complexes in basal keratinocytes. Genetic alterations of these proteins cause epidermolysis bullosa simplex (EBS) characterized by disturbed cytoarchitecture and cell fragility. The mechanisms through which mutations located after the documented plectin IF-binding site, composed of the plakin-repeat domain (PRD) B5 and the linker, as well as mutations in K5 or K14, lead to EBS remain unclear. We investigated the interaction of plectin C terminus, encompassing four domains, the PRD B5, the linker, the PRD C, and the C extremity, with K5/K14 using different approaches, including a rapid and sensitive fluorescent protein-binding assay, based on enhanced green fluorescent protein-tagged proteins (FluoBACE). Our results demonstrate that all four plectin C-terminal domains contribute to its association with K5/K14 and act synergistically to ensure efficient IF binding. The plectin C terminus predominantly interacted with the K5/K14 coil 1 domain and bound more extensively to K5/K14 filaments compared with monomeric keratins or IF assembly intermediates. These findings indicate a multimodular association of plectin with K5/K14 filaments and give insights into the molecular basis of EBS associated with pathogenic mutations in plectin, K5, or K14 genes.Journal of Investigative Dermatology advance online publication, 10 July 2014; doi:10.1038/jid.2014.255.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10−/− mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10−/− mice suggests that there is a considerable redundancy in the keratin gene family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5−/− mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14−/− mice. In contrast to the K14−/− mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5−/− mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed differential gene expression in normal versus jun-transformed avian fibroblasts by using subtracted nucleic acid probes and differential nucleic acid hybridization techniques for the isolation of cDNA clones. One clone corresponded to a gene that was strongly expressed in a previously established quail (Coturnix japonica) embryo fibroblast line (VCD) transformed by a chimeric jun oncogene but whose expression was undetectable in normal quail embryo fibroblasts. Furthermore, the gene was expressed in quail or chicken fibroblast cultures that were freshly transformed by retroviral constructs carrying various viral or cellular jun alleles and in chicken fibroblasts transformed by the avian retrovirus ASV17 carrying the original viral v-jun allele. However, its expression was undetectable in a variety of established avian cell lines or freshly prepared avian fibroblast cultures transformed by other oncogenes or a chemical carcinogen. The nucleotide and deduced amino acid sequences of the cDNA clone were not identical to any sequence entries in the data bases but revealed significant similarities to avian beta-keratin genes; the highest degree of amino acid sequence identity was 63%. The gene, which we termed bkj, may represent a direct or indirect target for jun function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keratins, the constituents of epithelial intermediate filaments, are precisely regulated in a tissue- and development-specific manner, although little is known about the molecular mechanisms underlying this regulation. The expression pattern of keratin 6 is particularly complex, since besides being constitutively expressed in hair follicles and in suprabasal cells of a variety of internal stratified epithelia, it is induced in epidermis in both natural and artificially caused hyperproliferative situations. Therefore, the regulatory sequences controlling keratin 6 gene activity are particularly suitable for target gene expression in a tissue-specific manner. More interestingly, they can be skin-induced in transgenic animals or in gene therapy protocols, particularly those addressing epidermal hyperproliferative disorders. To delimit the regions containing these regulatory elements, different parts of the bovine keratin 6 gene linked to a beta-galactosidase reporter gene have been assayed in transgenic mice. A 9-kbp fragment from the 5' upstream region was able to provide both suprabasal tissue-specific and inducible reporter expression.

Relevância:

20.00% 20.00%

Publicador: