1000 resultados para karyotype evolution
Resumo:
Chromosome number reflects strong constraints on karyotype evolution, unescaped by the majority of animal taxa. Although there is commonly chromosomal polymorphism among closely related taxa, very large differences in chromosome number are rare. This study reports one of the most extensive chromosomal ranges yet reported for an animal genus. Apiomorpha Rubsaamen (Hemiptera: Coccoidea: Eriococcidae), an endemic Australian gall-inducing scale insect genus, exhibits an extraordinary 48-fold variation in chromosome number with diploid numbers ranging from 4 to about 192. Diploid complements of all other eriococcids examined to date range only from 6 to 28. Closely related species of Apiomorpha usually have very different karyotypes, to the extent that the variation within some species- groups is as great as that across the entire genus. There is extensive chromosomal variation among populations within 17 of the morphologically defined species of Apiomorpha indicating the existence of cryptic species-complexes. The extent and pattern of karyotypic variation suggests rapid chromosomal evolution via fissions and (or) fusions. It is hypothesized that chromosomal rearrangements in Apiomorpha species may be associated with these insects' tracking the radiation of their speciose host genus, Eucalyptus.
Genomic rearrangements in trypanosomatids: an alternative to the "one gene" evolutionary hypotheses?
Resumo:
Most molecular trees of trypanosomatids are based on point mutations within DNA sequences. In contrast, there are very few evolutionary studies considering DNA (re) arrangement as genetic characters. Waiting for the completion of the various parasite genome projects, first information may already be obtained from chromosome size-polymorphism, using the appropriate algorithms for data processing. Three illustrative models are presented here. First, the case of Leishmania (Viannia) braziliensis/L. (V.) peruviana is described. Thanks to a fast evolution rate (due essentially to amplification/deletion of tandemly repeated genes), molecular karyotyping seems particularly appropriate for studying recent evolutionary divergence, including eco-geographical diversification. Secondly, karyotype evolution is considered at the level of whole genus Leishmania. Despite the fast chromosome evolution rate, there is qualitative congruence with MLEE- and RAPD-based evolutionary hypotheses. Significant differences may be observed between major lineages, likely corresponding to major and less frequent rearrangements (fusion/fission, translocation). Thirdly, comparison is made with Trypanosoma cruzi. Again congruence is observed with other hypotheses and major lineages are delineated by significant chromosome rearrangements. The level of karyotype polymorphism within that "species" is similar to the one observed in "genus" Leishmania. The relativity of the species concept among these two groups of parasites is discussed.
Resumo:
The fishes of the order Perciformes are characterized as an important model for understanding the genetic structure of marine populations, because besides they present examples of conservation chromosomal, also they present the karyotype diversification for some groups. Gobiidae family is the most specious in the marine environment. Among its representatives, many species are part of a cryptic fauna little noticed and studied, a wide distribution with behavioral and reproductive characteristics, that make them conducive to the action of biogeographical barriers. Morphologically this family presents reduced body structures through simplification and regressions. Despite their importance in evolutionary inferences, cytogenetics data are incipient facing their species diversity, especially with western Atlantic species. In order to estimate the evolutionary diversity in Gobiidae, it were developed cytogenetic analysis and the standards body, through geometric morphometrics in five species on the Brazilian coast, Coryphopterus glaucofraenum, Bathygobius mystacium, B. soporator, Ctenogobius smaragdus e C. Boleosoma. The data show significant karyotype and morphological diversity among the species. The pericentric inversions and mergers play an important role in chromosomal evolution of this family, causing karyotypic structural and numerical differences in all species. Karyotypic and morphological comparisons among geographic samples of B. soporator from the coast of Maranhão, Rio Grande do Norte and Bahia showed cytogenetics patterns commons, but different morphological patterns. A sample from the Atol das Rocas revealed conspicuous morphological and karyotypic differentiation of another continental populations, confirming the presence of a new island species. The approaches done reveal diversification consistent with characteristics of a group of low vagile and largely able to environmental selection due from peculiar ecological requirements
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The location of chromosomal telomeric repeats (TTAGGG)(n) was investigated in two species of the Molossidae family, Eumops glaucinus and Eumops perotis. The diploid chromosome number (2n) is 40 in E. glaucinus and 48 in E. perotis and the fundamental numbers (FN) are 64 and 58, respectively. It has been suggested that the E. glaucinus karyotype has evolved from the E. perotis karyotype through Robertsonian fusion events. In the present study, the telomeric sequences were detected at the termini of chromosomes in both species. In addition, E. glaucinus also displayed telomeric repeats in centromeric and pericentromeric regions in almost all biarmed chromosomes. Conversely, in E. perotis pericentromeric signals were only observed in two biarmed chromosomes. In both E. glaucinus and E. perotis, such telomeric sequences were observed as part of the heterochromatin. The interstitial sites of telomeric sequences suggest that they are remnants of telomeres of ancestral chromosomes that participated in the fusion event.
Resumo:
Thoracocharax stellatus (Characiformes, Gasteropelecidae) is a small Neotropical species of fish, widely distributed in several rivers of South America. Evidence for karyotype heteromorphysm in populations from different geographical regions has been reported for this species. In this way, populations of T. stellatus from the Paraguay River basin were cytogenetically characterized and the results were compared with other studies performed in the same species but from different basins. The results showed a diploid number of 2n = 54 for T. stellatus, with chromosomes arranged in 6 metacentric (m), 6 submetacentric (sm), 2 subtelocentric (st) and 40 acrocentric (a), for both sexes, with a simple Nucleolus Organiser Region (NOR) system reported by the techniques of silver nitrate impregnation and fluorescent in situ hybridisation (FISH) using 18S rDNA sequences as probe. The distribution of constitutive heterochromatin, observed by the C-band technique and Chromomycin A3 staining showed great similarity among the analyzed populations and consists mainly of discrete blocks in the pericentromeric and telomeric regions of most chromosomes. The presence of female heterogamety was alsoobserved indicating a ZZ/ZW system with W chromosome almost totally heterochromatic. The results also show cytogenetic diversity of the group and are useful to understand the mechanisms of karyotype evolution of the family. © Edson Lourenço da Silva et al.
Resumo:
The family Loricariidae with 813 nominal species is one of the largest fish families of the world. Hypostominae, its more complex subfamily, was recently divided into five tribes. The tribe Hypostomini is composed of a single genus, Hypostomus Lacépède, 1803, which exhibits the largest karyotypic diversity in the family Loricariidae. With the main objective of contributing to a better understanding of the relationship and the patterns of evolution among the karyotypes of Hypostomus species, cytogenetic studies were conducted in six species of the genus from Brazil and Venezuela. The results show a great chromosome variety with diploid numbers ranging from 2n=68 to 2n=76, with a clear predominance of acrocentric chromosomes. The Ag-NORs are located in terminal position in all species analyzed. Three species have single Ag-NORs (Hypostomus albopunctatus (Regan, 1908), H. prope plecostomus (Linnaeus, 1758), and H. prope paulinus (Ihering, 1905)) and three have multiple Ag-NORs (H. ancistroides (Ihering, 1911), H. prope iheringi (Regan, 1908), and H. strigaticeps (Regan, 1908)). In the process of karyotype evolution of the group, the main type of chromosome rearrangements was possibly centric fissions, which may have been facilitated by the putative tetraploid origin of Hypostomus species. The relationship between the karyotype changes and the evolution in the genus is discussed. © Anderson Luis Alves et al.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)